onekq commited on
Commit
91d4a22
1 Parent(s): bc506f3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -181
app.py CHANGED
@@ -1,204 +1,81 @@
1
  import gradio as gr
2
- from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
- from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
 
6
 
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
 
 
 
 
 
 
 
31
 
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
 
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
 
 
 
51
 
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
 
 
60
  def init_leaderboard(dataframe):
61
  if dataframe is None or dataframe.empty:
62
  raise ValueError("Leaderboard DataFrame is empty or None.")
63
  return Leaderboard(
64
  value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
  select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
  label="Select Columns to Display:",
70
  ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
- filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
- ],
87
  bool_checkboxgroup_label="Hide models",
88
  interactive=False,
89
  )
90
 
 
 
 
91
 
92
- demo = gr.Blocks(css=custom_css)
93
- with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
96
-
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
 
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
- with gr.Row():
145
- gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
146
-
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
-
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
- submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
-
191
- with gr.Row():
192
- with gr.Accordion("📙 Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
-
201
- scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
- scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
1
  import gradio as gr
 
2
  import pandas as pd
3
+ import numpy as np
4
+ from collections import defaultdict
5
+ from gradio_leaderboard import Leaderboard, SelectColumns
6
 
7
+ # Load the DataFrame from the CSV file for detailed pass@k metrics
8
+ df = pd.read_csv('results.csv')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ # Function to estimate pass@k
11
+ def estimate_pass_at_k(num_samples, num_correct, k):
12
+ def estimator(n, c, k):
13
+ if n - c < k:
14
+ return 1.0
15
+ return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
16
 
17
+ return np.array([estimator(n, c, k) for n, c in zip(num_samples, num_correct)])
 
18
 
19
+ # Function to calculate pass@k
20
+ def calculate_pass_at_k(df, model, scenario, k_values=[1, 5, 10]):
21
+ filtered_df = df[(df['Model'] == model) & (df['Scenario'] == scenario)]
22
+ num_samples = filtered_df['Runs'].values
23
+ num_correct = filtered_df['Successes'].values
 
 
 
 
 
 
 
 
 
 
24
 
25
+ pass_at_k = {f"pass@{k}": estimate_pass_at_k(num_samples, num_correct, k).mean() for k in k_values}
26
+ return pass_at_k
27
 
28
+ # Function to filter data and calculate pass@k
29
+ def filter_data(model, scenario):
30
+ pass_at_k = calculate_pass_at_k(df, model, scenario)
31
+ return pd.DataFrame([pass_at_k])
 
 
 
32
 
33
+ # Initialize the leaderboard
34
  def init_leaderboard(dataframe):
35
  if dataframe is None or dataframe.empty:
36
  raise ValueError("Leaderboard DataFrame is empty or None.")
37
  return Leaderboard(
38
  value=dataframe,
39
+ datatype=["markdown", "number", "number", "number"], # Specify the types of your columns
40
  select_columns=SelectColumns(
41
+ default_selection=["Model", "pass@1", "pass@5", "pass@10"], # Columns to display by default
42
+ cant_deselect=[], # Columns that cannot be deselected
43
  label="Select Columns to Display:",
44
  ),
45
+ search_columns=["Model"], # Columns that can be searched
46
+ hide_columns=[], # Columns to hide
47
+ filter_columns=[], # Filters for the columns
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  bool_checkboxgroup_label="Hide models",
49
  interactive=False,
50
  )
51
 
52
+ # Gradio interface
53
+ models = df['Model'].unique()
54
+ scenarios = df['Scenario'].unique()
55
 
56
+ demo = gr.Blocks()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ with demo:
59
+ gr.Markdown("# 🏆 WebApp1K Detailed Leaderboard")
60
+
61
+ model_input = gr.Dropdown(choices=models, label="Select Model")
62
+ scenario_input = gr.Dropdown(choices=scenarios, label="Select Scenario")
63
+ output = gr.DataFrame(headers=["pass@1", "pass@5", "pass@10"])
64
+
65
+ filter_button = gr.Button("Filter")
66
+ filter_button.click(filter_data, inputs=[model_input, scenario_input], outputs=output)
67
+
68
+ output.render()
69
+
70
+ # Initialize leaderboard with the complete DataFrame
71
+ complete_pass_at_k = df.groupby('Model').apply(lambda x: pd.Series({
72
+ 'pass@1': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 1).mean(),
73
+ 'pass@5': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 5).mean(),
74
+ 'pass@10': estimate_pass_at_k(x['Runs'].values, x['Successes'].values, 10).mean()
75
+ })).reset_index()
76
+
77
+ leaderboard = init_leaderboard(complete_pass_at_k)
78
+ leaderboard.render()
79
+
80
+ # Launch the Gradio interface
81
+ demo.launch()