from transformers import ViTFeatureExtractor, ViTForImageClassification import warnings from torchvision import transforms from datasets import load_dataset from pytorch_grad_cam import run_dff_on_image, GradCAM from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image from PIL import Image import numpy as np import cv2 as cv import torch from typing import List, Callable, Optional import logging from face_grab import FaceGrabber # original borrowed from https://github.com/jacobgil/pytorch-grad-cam/blob/master/tutorials/HuggingFace.ipynb # thanks @jacobgil # further mods beyond this commit by @simonSlamka warnings.filterwarnings("ignore") logging.basicConfig(level=logging.INFO) class HuggingfaceToTensorModelWrapper(torch.nn.Module): def __init__(self, model): super(HuggingfaceToTensorModelWrapper, self).__init__() self.model = model def forward(self, x): return self.model(x).logits class GradCam(): def __init__(self): pass def category_name_to_index(self, model, category_name): name_to_index = dict((v, k) for k, v in model.config.id2label.items()) return name_to_index[category_name] def run_grad_cam_on_image(self, model: torch.nn.Module, target_layer: torch.nn.Module, targets_for_gradcam: List[Callable], reshape_transform: Optional[Callable], input_tensor: torch.nn.Module, input_image: Image, method: Callable=GradCAM, threshold: float=0.5): with method(model=HuggingfaceToTensorModelWrapper(model), target_layers=[target_layer], reshape_transform=reshape_transform) as cam: # Replicate the tensor for each of the categories we want to create Grad-CAM for: repeated_tensor = input_tensor[None, :].repeat(len(targets_for_gradcam), 1, 1, 1) batch_results = cam(input_tensor=repeated_tensor, targets=targets_for_gradcam) results = [] for grayscale_cam in batch_results: grayscale_cam[grayscale_cam < threshold] = 0 visualization = show_cam_on_image(np.float32(input_image)/255, grayscale_cam, use_rgb=True) # Make it weight less in the notebook: visualization = cv.resize(visualization, (visualization.shape[1]//2, visualization.shape[0]//2)) results.append(visualization) return np.hstack(results) def print_top_categories(self, model, img_tensor, top_k=5): logits = model(img_tensor.unsqueeze(0)).logits probabilities = torch.nn.functional.softmax(logits, dim=1) indices = logits.cpu()[0, :].detach().numpy().argsort()[-top_k :][::-1] for i in indices: print(f"Predicted class (sorted from most confident) {i}: {model.config.id2label[i]}, confidence: {probabilities[0][i].item()}") def reshape_transform_vit_huggingface(self, x): activations = x[:, 1:, :] activations = activations.view(activations.shape[0], 14, 14, activations.shape[2]) activations = activations.transpose(2, 3).transpose(1, 2) return activations if __name__ == "__main__": faceGrabber = FaceGrabber() gradCam = GradCam() image = Image.open("Feature-Image-74.jpg").convert("RGB") face = faceGrabber.grab_faces(np.array(image)) if face is not None: image = Image.fromarray(face) img_tensor = transforms.ToTensor()(image) model = ViTForImageClassification.from_pretrained("ongkn/attraction-classifier") targets_for_gradcam = [ClassifierOutputTarget(gradCam.category_name_to_index(model, "pos")), ClassifierOutputTarget(gradCam.category_name_to_index(model, "neg"))] target_layer_dff = model.vit.layernorm target_layer_gradcam = model.vit.encoder.layer[-2].output image_resized = image.resize((224, 224)) tensor_resized = transforms.ToTensor()(image_resized) dff_image = run_dff_on_image(model=model, target_layer=target_layer_dff, classifier=model.classifier, img_pil=image_resized, img_tensor=tensor_resized, reshape_transform=gradCam.reshape_transform_vit_huggingface, n_components=5, top_k=10, threshold=0, output_size=None) #(500, 500)) cv.namedWindow("DFF Image", cv.WINDOW_KEEPRATIO) cv.imshow("DFF Image", cv.cvtColor(dff_image, cv.COLOR_BGR2RGB)) cv.resizeWindow("DFF Image", 2500, 700) # cv.waitKey(0) # cv.destroyAllWindows() grad_cam_image = gradCam.run_grad_cam_on_image(model=model, target_layer=target_layer_gradcam, targets_for_gradcam=targets_for_gradcam, input_tensor=tensor_resized, input_image=image_resized, reshape_transform=gradCam.reshape_transform_vit_huggingface, threshold=0) cv.namedWindow("Grad-CAM Image", cv.WINDOW_KEEPRATIO) cv.imshow("Grad-CAM Image", grad_cam_image) cv.resizeWindow("Grad-CAM Image", 2000, 1250) cv.waitKey(0) cv.destroyAllWindows() gradCam.print_top_categories(model, tensor_resized)