File size: 9,976 Bytes
c50ec4a
c40844d
c50ec4a
 
 
 
 
 
c40844d
c50ec4a
 
 
 
 
 
 
 
 
 
 
c40844d
c50ec4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c40844d
c50ec4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
os.system("pip install gradio")

import gradio as gr
from pathlib import Path
os.system("pip install gsutil")


os.system("git clone --branch=main https://github.com/google-research/t5x")
os.system("mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp")
os.system("sed -i 's:jax\[tpu\]:jax:' setup.py")
os.system("python3 -m pip install -e .")
os.system("python3 -m pip install --upgrade pip")



# install mt3
os.system("git clone --branch=main https://github.com/magenta/mt3")
os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp")
os.system("python3 -m pip install -e .")
os.system("pip install tensorflow_cpu")
# copy checkpoints
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .")

# copy soundfont (originally from https://sites.google.com/site/soundfonts4u)
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .")

#@title Imports and Definitions





import functools
import os

import numpy as np

import tensorflow.compat.v2 as tf

import functools
import gin
import jax
import librosa
import note_seq



import seqio
import t5
import t5x

from mt3 import metrics_utils
from mt3 import models
from mt3 import network
from mt3 import note_sequences
from mt3 import preprocessors
from mt3 import spectrograms
from mt3 import vocabularies


import nest_asyncio
nest_asyncio.apply()

SAMPLE_RATE = 16000
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2'

def upload_audio(audio, sample_rate):
  return note_seq.audio_io.wav_data_to_samples_librosa(
    audio, sample_rate=sample_rate)



class InferenceModel(object):
  """Wrapper of T5X model for music transcription."""

  def __init__(self, checkpoint_path, model_type='mt3'):

    # Model Constants.
    if model_type == 'ismir2021':
      num_velocity_bins = 127
      self.encoding_spec = note_sequences.NoteEncodingSpec
      self.inputs_length = 512
    elif model_type == 'mt3':
      num_velocity_bins = 1
      self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec
      self.inputs_length = 256
    else:
      raise ValueError('unknown model_type: %s' % model_type)

    gin_files = ['/home/user/app/mt3/gin/model.gin',
                 '/home/user/app/mt3/gin/mt3.gin']

    self.batch_size = 8
    self.outputs_length = 1024
    self.sequence_length = {'inputs': self.inputs_length, 
                            'targets': self.outputs_length}

    self.partitioner = t5x.partitioning.PjitPartitioner(
        model_parallel_submesh=(1, 1, 1, 1), num_partitions=1)

    # Build Codecs and Vocabularies.
    self.spectrogram_config = spectrograms.SpectrogramConfig()
    self.codec = vocabularies.build_codec(
        vocab_config=vocabularies.VocabularyConfig(
            num_velocity_bins=num_velocity_bins))
    self.vocabulary = vocabularies.vocabulary_from_codec(self.codec)
    self.output_features = {
        'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2),
        'targets': seqio.Feature(vocabulary=self.vocabulary),
    }

    # Create a T5X model.
    self._parse_gin(gin_files)
    self.model = self._load_model()

    # Restore from checkpoint.
    self.restore_from_checkpoint(checkpoint_path)

  @property
  def input_shapes(self):
    return {
          'encoder_input_tokens': (self.batch_size, self.inputs_length),
          'decoder_input_tokens': (self.batch_size, self.outputs_length)
    }

  def _parse_gin(self, gin_files):
    """Parse gin files used to train the model."""
    gin_bindings = [
        'from __gin__ import dynamic_registration',
        'from mt3 import vocabularies',
        '[email protected]()',
        'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS'
    ]
    with gin.unlock_config():
      gin.parse_config_files_and_bindings(
          gin_files, gin_bindings, finalize_config=False)

  def _load_model(self):
    """Load up a T5X `Model` after parsing training gin config."""
    model_config = gin.get_configurable(network.T5Config)()
    module = network.Transformer(config=model_config)
    return models.ContinuousInputsEncoderDecoderModel(
        module=module,
        input_vocabulary=self.output_features['inputs'].vocabulary,
        output_vocabulary=self.output_features['targets'].vocabulary,
        optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0),
        input_depth=spectrograms.input_depth(self.spectrogram_config))


  def restore_from_checkpoint(self, checkpoint_path):
    """Restore training state from checkpoint, resets self._predict_fn()."""
    train_state_initializer = t5x.utils.TrainStateInitializer(
      optimizer_def=self.model.optimizer_def,
      init_fn=self.model.get_initial_variables,
      input_shapes=self.input_shapes,
      partitioner=self.partitioner)

    restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig(
        path=checkpoint_path, mode='specific', dtype='float32')

    train_state_axes = train_state_initializer.train_state_axes
    self._predict_fn = self._get_predict_fn(train_state_axes)
    self._train_state = train_state_initializer.from_checkpoint_or_scratch(
        [restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0))

  @functools.lru_cache()
  def _get_predict_fn(self, train_state_axes):
    """Generate a partitioned prediction function for decoding."""
    def partial_predict_fn(params, batch, decode_rng):
      return self.model.predict_batch_with_aux(
          params, batch, decoder_params={'decode_rng': None})
    return self.partitioner.partition(
        partial_predict_fn,
        in_axis_resources=(
            train_state_axes.params,
            t5x.partitioning.PartitionSpec('data',), None),
        out_axis_resources=t5x.partitioning.PartitionSpec('data',)
    )

  def predict_tokens(self, batch, seed=0):
    """Predict tokens from preprocessed dataset batch."""
    prediction, _ = self._predict_fn(
        self._train_state.params, batch, jax.random.PRNGKey(seed))
    return self.vocabulary.decode_tf(prediction).numpy()

  def __call__(self, audio):
    """Infer note sequence from audio samples.
    
    Args:
      audio: 1-d numpy array of audio samples (16kHz) for a single example.
    Returns:
      A note_sequence of the transcribed audio.
    """
    ds = self.audio_to_dataset(audio)
    ds = self.preprocess(ds)

    model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)(
        ds, task_feature_lengths=self.sequence_length)
    model_ds = model_ds.batch(self.batch_size)

    inferences = (tokens for batch in model_ds.as_numpy_iterator()
                  for tokens in self.predict_tokens(batch))

    predictions = []
    for example, tokens in zip(ds.as_numpy_iterator(), inferences):
      predictions.append(self.postprocess(tokens, example))

    result = metrics_utils.event_predictions_to_ns(
        predictions, codec=self.codec, encoding_spec=self.encoding_spec)
    return result['est_ns']

  def audio_to_dataset(self, audio):
    """Create a TF Dataset of spectrograms from input audio."""
    frames, frame_times = self._audio_to_frames(audio)
    return tf.data.Dataset.from_tensors({
        'inputs': frames,
        'input_times': frame_times,
    })

  def _audio_to_frames(self, audio):
    """Compute spectrogram frames from audio."""
    frame_size = self.spectrogram_config.hop_width
    padding = [0, frame_size - len(audio) % frame_size]
    audio = np.pad(audio, padding, mode='constant')
    frames = spectrograms.split_audio(audio, self.spectrogram_config)
    num_frames = len(audio) // frame_size
    times = np.arange(num_frames) / self.spectrogram_config.frames_per_second
    return frames, times

  def preprocess(self, ds):
    pp_chain = [
        functools.partial(
            t5.data.preprocessors.split_tokens_to_inputs_length,
            sequence_length=self.sequence_length,
            output_features=self.output_features,
            feature_key='inputs',
            additional_feature_keys=['input_times']),
        # Cache occurs here during training.
        preprocessors.add_dummy_targets,
        functools.partial(
            preprocessors.compute_spectrograms,
            spectrogram_config=self.spectrogram_config)
    ]
    for pp in pp_chain:
      ds = pp(ds)
    return ds

  def postprocess(self, tokens, example):
    tokens = self._trim_eos(tokens)
    start_time = example['input_times'][0]
    # Round down to nearest symbolic token step.
    start_time -= start_time % (1 / self.codec.steps_per_second)
    return {
        'est_tokens': tokens,
        'start_time': start_time,
        # Internal MT3 code expects raw inputs, not used here.
        'raw_inputs': []
    }

  @staticmethod
  def _trim_eos(tokens):
    tokens = np.array(tokens, np.int32)
    if vocabularies.DECODED_EOS_ID in tokens:
      tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)]
    return tokens






inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3')


def inference(audio):
  with open(audio, 'rb') as fd:
      contents = fd.read()
  audio = upload_audio(contents,sample_rate=16000)
  
  est_ns = inference_model(audio)
  
  note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid')
 
  return './transcribed.mid'
  
title = "MT3"
description = "Gradio demo for MT3: Multi-Task Multitrack Music Transcription. To use it, simply upload your audio file, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: Multi-Task Multitrack Music Transcription</a> | <a href='https://github.com/magenta/mt3' target='_blank'>Github Repo</a></p>"

examples=[['download.wav']]

gr.Interface(
    inference, 
    gr.inputs.Audio(type="filepath", label="Input"), 
    [gr.outputs.File(label="Output")],
    title=title,
    description=description,
    article=article,
    examples=examples,
    allow_flagging=False,
    allow_screenshot=False,
    enable_queue=True
    ).launch()