Spaces:
Sleeping
Sleeping
File size: 8,301 Bytes
f5cf172 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
import scipy
import os
import streamlit as st
import pandas as pd
from transformers import pipeline #set_seed,
from transformers import VitsTokenizer, VitsModel
from datasets import load_dataset, Audio
from huggingface_hub.inference_api import InferenceApi
from src import *
########################
st.title("Mockingbird")
st.header("A demo of open Text to Speech tools")
tts, about = st.tabs(["Text to speech", "**About**"])
########################
with tts:
# Configurations -- language choice and text
tts_lang = st.selectbox('Language of text', (language_list), format_func = decode_iso)
tts_text = st.text_area(label = "Please enter your sentence here:",
value="", placeholder=placeholders[tts_lang] )
target_speaker_file = st.file_uploader("If you would like to test voice conversion, you may upload your audio below. You should upload one file in .wav format. If you don't, a default file will be used.",
type=['wav'])
# Inference
if st.button("Generate"):
# Warning about alphabet support
if tts_lang in ['rus', 'fas']:
st.warning("WARNING! On Windows, ESpeak-NG has trouble synthesizing output when input is provided from non-Latin alphabets.")
st.divider()
# Synthesis
with st.spinner(":rainbow[Synthesizing, please wait... (this will be slowest the first time you generate audio in a new language)]"):
if tts_text == "":
tts_text=placeholders[tts_lang]
# First, make the audio
base_mms = synth_mms(tts_text, models[tts_lang]['mms'])
base_coqui= synth_coqui(tts_text, models[tts_lang]['coqui'])
base_espeakng= synth_espeakng(tts_text, models[tts_lang]['espeakng'])
if tts_lang=="swh":
finetuned_mms1 = synth_mms(tts_text, "khof312/mms-tts-swh-female-1")
finetuned_mms2 = synth_mms(tts_text, "khof312/mms-tts-swh-female-2")
#vc_mms
#vc_coqui
#vc_espeakng
"## Synthesis"
"### Default models"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row4 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
if base_mms is not None:
row2[0].write(f"Meta MMS")
row2[1].write("default")
row2[2].audio(base_mms[0], sample_rate = base_mms[1])
if base_coqui is not None:
row3[0].write(f"Coqui")
row3[1].write("default")
row3[2].audio(base_coqui[0], sample_rate = base_coqui[1])
if base_espeakng is not None:
row4[0].write(f"Espeak-ng")
row4[1].write("default")
row4[2].audio(base_espeakng[0], sample_rate = base_espeakng[1])
#################################################################
if tts_lang == "swh":
"### Fine Tuned"
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
row2[0].write(f"Meta MMS")
row2[1].write("female 1")
row2[2].audio(finetuned_mms1[0], sample_rate = finetuned_mms1[1])
row3[0].write(f"Meta MMS")
row3[1].write("female 2")
row3[2].audio(finetuned_mms2[0], sample_rate = finetuned_mms2[1])
st.divider()
"## Voice conversion" #################################################################
st.warning('''Note: The naturalness of the audio will only be as good as that of the audio in "default models" above.''')
if target_speaker_file is not None:
rate, wav = scipy.io.wavfile.read(target_speaker_file)
scipy.io.wavfile.write("target_speaker_custom.wav", data=wav, rate=rate)
target_speaker = "target_speaker_custom.wav"
else:
target_speaker = "target_speaker.wav"
if base_mms is not None:
scipy.io.wavfile.write("source_speaker_mms.wav", rate=base_mms[1], data=base_mms[0].T)
converted_mms = convert_coqui('source_speaker_mms.wav', target_speaker)
if base_coqui is not None:
scipy.io.wavfile.write("source_speaker_coqui.wav", rate=base_coqui[1], data=base_coqui[0].T)
converted_coqui = convert_coqui('source_speaker_coqui.wav', target_speaker)
if base_espeakng is not None:
scipy.io.wavfile.write("source_speaker_espeakng.wav", rate=base_espeakng[1], data=base_espeakng[0].T)
converted_espeakng = convert_coqui('source_speaker_espeakng.wav', target_speaker)
row1 = st.columns([1,1,2])
row2 = st.columns([1,1,2])
row3 = st.columns([1,1,2])
row1[0].write("**Model**")
row1[1].write("**Configuration**")
row1[2].write("**Audio**")
if base_mms is not None:
row1[0].write(f"Meta MMS")
row1[1].write(f"converted")
row1[2].audio(converted_mms[0], sample_rate = converted_mms[1])
if base_coqui is not None:
row2[0].write(f"Coqui")
row2[1].write(f"converted")
row2[2].audio(converted_coqui[0], sample_rate = converted_coqui[1])
if base_espeakng is not None:
row3[0].write(f"Espeak-ng")
row3[1].write(f"converted")
row3[2].audio(converted_espeakng[0], sample_rate = converted_espeakng[1])
#row3[0].write("MMS-TTS-SWH")
#row3[1].audio(synth, sample_rate=16_000)
#row3[2].audio(synth, sample_rate=16_000)
#st.audio(synth, sample_rate=16_000)
#data.write(np.random.randn(10, 1)
#col1.subheader("A wide column with a chart")
#col1.line_chart(data)
#col2.subheader("A narrow column with the data")
#col2.write(data)
with about:
#st.header("How it works")
st.markdown('''# Mockingbird TTS Demo
This page is a demo of the openly available Text to Speech models for various languages of interest. Currently, 3 synthesizers are supported:
- [**Meta's Massively Multilingual Speech (MMS)**](https://ai.meta.com/blog/multilingual-model-speech-recognition/) model, which supports over 1000 languages.[^1]
- [**Coqui's TTS**](https://docs.coqui.ai/en/latest/#) package;[^2] while no longer supported, Coqui acted as a hub for TTS model hosting and these models are still available.
- [**ESpeak-NG's**](https://github.com/espeak-ng/espeak-ng/tree/master)'s synthetic voices**[^3]
Voice conversion is achieved through Coqui.
Notes:
1. ESpeak-NG seems to have the worst performance out of the box, but it has a lot of options for controlling voice output.
2. Where a synthesizer supports multiple models/voices, I manually pick the appropriate model.
3. Not all synthesizers support a given language.
[^1]: Endpoints used are of the form https://huggingface.co/facebook/mms-tts-[LANG].
Learn more:
[Docs](https://huggingface.co/docs/transformers/model_doc/mms) |
[Paper](https://arxiv.org/abs/2305.13516) |
[Supported languages](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html)
[^2]: [Available models](https://github.com/coqui-ai/TTS/blob/dev/TTS/.models.json)
[^3]: [Language list](https://github.com/espeak-ng/espeak-ng/blob/master/docs/languages.md)
''')
|