Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,189 Bytes
0a3530a 6b87e28 bcd77eb bf23d2b 9346f1c b4ba8b7 248ce7d bcd77eb 2a5f9fb 8c49cb6 0a3530a 8c49cb6 976f398 df66f6e 0a3530a b4ba8b7 0a3530a b4ba8b7 df66f6e 4592791 8ba35a3 4592791 b4ba8b7 01233b7 58733e4 6e8f400 10f9b3c 4592791 d16cee2 67109fc d16cee2 adb0416 d16cee2 4592791 248ce7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import logging
import time
import datetime
import gradio as gr
import datasets
from huggingface_hub import snapshot_download
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
FAQ_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
AutoEvalColumn,
fields,
)
from src.envs import (
EVAL_REQUESTS_PATH,
AGGREGATED_REPO,
QUEUE_REPO,
REPO_ID,
HF_HOME,
)
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
DO_FULL_INIT = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"
LAST_UPDATE_LEADERBOARD = datetime.datetime.now()
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info(f"Time taken for {func.__name__}: {diff} seconds")
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
attempt = 0
while attempt < max_attempts:
try:
logging.info(f"Downloading {repo_id} to {local_dir}")
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
repo_type=repo_type,
tqdm_class=None,
etag_timeout=30,
max_workers=8,
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
time.sleep(wait_time)
attempt += 1
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")
def get_latest_data_leaderboard(leaderboard_initial_df = None):
current_time = datetime.datetime.now()
global LAST_UPDATE_LEADERBOARD
if current_time - LAST_UPDATE_LEADERBOARD < datetime.timedelta(minutes=10) and leaderboard_initial_df is not None:
return leaderboard_initial_df
LAST_UPDATE_LEADERBOARD = current_time
leaderboard_dataset = datasets.load_dataset(
AGGREGATED_REPO,
"default",
split="train",
cache_dir=HF_HOME,
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset
verification_mode="no_checks"
)
leaderboard_df = get_leaderboard_df(
leaderboard_dataset=leaderboard_dataset,
cols=COLS,
benchmark_cols=BENCHMARK_COLS,
)
return leaderboard_df
def get_latest_data_queue():
eval_queue_dfs = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return eval_queue_dfs
def init_space():
"""Initializes the application space, loading only necessary data."""
if DO_FULL_INIT:
# These downloads only occur on full initialization
download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
# Always redownload the leaderboard DataFrame
leaderboard_df = get_latest_data_leaderboard()
# Evaluation queue DataFrame retrieval is independent of initialization detail level
eval_queue_dfs = get_latest_data_queue()
return leaderboard_df, eval_queue_dfs
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
leaderboard_df, eval_queue_dfs = init_space()
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
# Data processing for plots now only on demand in the respective Gradio tab
def load_and_create_plots():
plot_df = create_plot_df(create_scores_df(leaderboard_df))
return plot_df
def init_leaderboard(dataframe):
return Leaderboard(
value = dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.fullname.name, AutoEvalColumn.license.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
AutoEvalColumn.params.name,
type="slider",
min=0.01,
max=150,
label="Select the number of parameters (B)",
),
ColumnFilter(
AutoEvalColumn.still_on_hub.name, type="boolean", label="Private or deleted", default=True
),
ColumnFilter(
AutoEvalColumn.merged.name, type="boolean", label="Contains a merge/moerge", default=True
),
ColumnFilter(AutoEvalColumn.moe.name, type="boolean", label="MoE", default=False),
ColumnFilter(AutoEvalColumn.not_flagged.name, type="boolean", label="Flagged", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(leaderboard_df)
with gr.TabItem("๐ Metrics through time", elem_id="llm-benchmark-tab-table", id=2):
with gr.Row():
with gr.Column():
plot_df = load_and_create_plots()
chart = create_metric_plot_obj(
plot_df,
[AutoEvalColumn.average.name],
title="Average of Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.Column():
plot_df = load_and_create_plots()
chart = create_metric_plot_obj(
plot_df,
BENCHMARK_COLS,
title="Top Scores and Human Baseline Over Time (from last update)",
)
gr.Plot(value=chart, min_width=500)
with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=3):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("โFAQ", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("๐ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
demo.load(fn=get_latest_data_leaderboard, inputs=[leaderboard], outputs=[leaderboard])
demo.queue(default_concurrency_limit=40).launch()
|