Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import shutil | |
import numpy as np | |
import gradio as gr | |
from huggingface_hub import Repository, HfApi | |
from transformers import AutoConfig | |
import json | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import pandas as pd | |
import datetime | |
from utils import get_eval_results_dicts, make_clickable_model | |
# clone / pull the lmeh eval data | |
H4_TOKEN = os.environ.get("H4_TOKEN", None) | |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" | |
IS_PUBLIC = bool(True) # add secret here | |
repo=None | |
if H4_TOKEN: | |
print("pulling repo") | |
# try: | |
# shutil.rmtree("./evals/") | |
# except: | |
# pass | |
repo = Repository( | |
local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset" | |
) | |
repo.git_pull() | |
# parse the results | |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"] | |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] | |
def load_results(model, benchmark, metric): | |
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json") | |
if not os.path.exists(file_path): | |
return 0.0, None | |
with open(file_path) as fp: | |
data = json.load(fp) | |
accs = np.array([v[metric] for k, v in data["results"].items()]) | |
mean_acc = np.mean(accs) | |
return mean_acc, data["config"]["model_args"] | |
COLS = ["base_model", "revision", "total β¬οΈ", "ARC (25-shot) β¬οΈ", "HellaSwag (10-shot) β¬οΈ", "MMLU (5-shot) β¬οΈ", "TruthQA (0-shot) β¬οΈ"] | |
TYPES = ["markdown","str", "number", "number", "number", "number", "number", ] | |
if not IS_PUBLIC: | |
COLS.insert(2, "8bit") | |
TYPES.insert(2, "bool") | |
EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"] | |
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"] | |
def get_leaderboard(): | |
if repo: | |
print("pulling changes") | |
repo.git_pull() | |
all_data = get_eval_results_dicts(IS_PUBLIC) | |
gpt4_values = { | |
"base_model":f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: blue; text-decoration: underline;text-decoration-style: dotted;">gpt4</a>', | |
"revision":"tech report", | |
"8bit":None, | |
"total β¬οΈ":84.3, | |
"ARC (25-shot) β¬οΈ":96.3, | |
"HellaSwag (10-shot) β¬οΈ":95.3, | |
"MMLU (5-shot) β¬οΈ":86.4, | |
"TruthQA (0-shot) β¬οΈ":59.0, | |
} | |
all_data.append(gpt4_values) | |
gpt35_values = { | |
"base_model":f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: blue; text-decoration: underline;text-decoration-style: dotted;">gpt3.5</a>', | |
"revision":"tech report", | |
"8bit":None, | |
"total β¬οΈ":71.9, | |
"ARC (25-shot) β¬οΈ":85.2, | |
"HellaSwag (10-shot) β¬οΈ":85.5, | |
"MMLU (5-shot) β¬οΈ":70.0, | |
"TruthQA (0-shot) β¬οΈ":47.0, | |
} | |
all_data.append(gpt35_values) | |
dataframe = pd.DataFrame.from_records(all_data) | |
dataframe = dataframe.sort_values(by=['total β¬οΈ'], ascending=False) | |
print(dataframe) | |
dataframe = dataframe[COLS] | |
return dataframe | |
def get_eval_table(): | |
if repo: | |
print("pulling changes for eval") | |
repo.git_pull() | |
entries = [entry for entry in os.listdir("evals/eval_requests") if not entry.startswith('.')] | |
all_evals = [] | |
for entry in entries: | |
print(entry) | |
if ".json"in entry: | |
file_path = os.path.join("evals/eval_requests", entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
data["# params"] = "unknown" | |
data["model"] = make_clickable_model(data["model"]) | |
data["revision"] = data.get("revision", "main") | |
all_evals.append(data) | |
else: | |
# this is a folder | |
sub_entries = [e for e in os.listdir(f"evals/eval_requests/{entry}") if not e.startswith('.')] | |
for sub_entry in sub_entries: | |
file_path = os.path.join("evals/eval_requests", entry, sub_entry) | |
with open(file_path) as fp: | |
data = json.load(fp) | |
#data["# params"] = get_n_params(data["model"]) | |
data["model"] = make_clickable_model(data["model"]) | |
all_evals.append(data) | |
dataframe = pd.DataFrame.from_records(all_evals) | |
return dataframe[EVAL_COLS] | |
leaderboard = get_leaderboard() | |
eval_queue = get_eval_table() | |
def is_model_on_hub(model_name, revision) -> bool: | |
try: | |
config = AutoConfig.from_pretrained(model_name, revision=revision) | |
return True | |
except Exception as e: | |
print("Could not get the model config from the hub") | |
print(e) | |
return False | |
def add_new_eval(model:str, base_model : str, revision:str, is_8_bit_eval: bool, private:bool, is_delta_weight:bool): | |
# check the model actually exists before adding the eval | |
if revision == "": | |
revision = "main" | |
if is_delta_weight and not is_model_on_hub(base_model, revision): | |
print(base_model, "base model not found on hub") | |
return | |
if not is_model_on_hub(model, revision): | |
print(model, "not found on hub") | |
return | |
print("adding new eval") | |
eval_entry = { | |
"model" : model, | |
"base_model" : base_model, | |
"revision" : revision, | |
"private" : private, | |
"8bit_eval" : is_8_bit_eval, | |
"is_delta_weight" : is_delta_weight, | |
"status" : "PENDING" | |
} | |
user_name = "" | |
model_path = model | |
if "/" in model: | |
user_name = model.split("/")[0] | |
model_path = model.split("/")[1] | |
OUT_DIR=f"eval_requests/{user_name}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" | |
api = HfApi() | |
api.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path, | |
repo_id=LMEH_REPO, | |
token=H4_TOKEN, | |
repo_type="dataset", | |
) | |
def refresh(): | |
return get_leaderboard(), get_eval_table() | |
block = gr.Blocks() | |
with block: | |
with gr.Row(): | |
gr.Markdown(f""" | |
# π€ Open Chatbot Leaderboard | |
<font size="4">With the plethora of chatbot LLMs being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which chatbot is the current state of the art. The π€ Open Chatbot Leaderboard aims to track, rank and evaluate chatbot models as they are released. We evaluate models of 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks. A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the π€ research cluster. As long as it is Transformers model with weights on the π€ hub. We also support delta-weights for non-commercial licensed models, such as llama. | |
<p> | |
Evaluation is performed against 4 popular benchmarks: | |
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions. | |
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models. | |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. | |
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> Truthful QA MC </a> (0-shot) - a benchmark to measure whether a language model is truthful in generating answers to questions. | |
<p> | |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings. </font> | |
""") | |
with gr.Row(): | |
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS, | |
datatype=TYPES, max_rows=5) | |
with gr.Row(): | |
gr.Markdown(f""" | |
# Evaluation Queue for the LMEH benchmarks, these models will be automatically evaluated on the π€ cluster | |
""") | |
with gr.Accordion("Evaluation Queue", open=False): | |
with gr.Row(): | |
eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS, | |
datatype=EVAL_TYPES, max_rows=5) | |
with gr.Row(): | |
refresh_button = gr.Button("Refresh") | |
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table, eval_table]) | |
with gr.Accordion("Submit a new model for evaluation"): | |
# with gr.Row(): | |
# gr.Markdown(f"""# Submit a new model for evaluation""") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="revision", placeholder="main") | |
with gr.Column(): | |
is_8bit_toggle = gr.Checkbox(False, label="8 bit eval", visible=not IS_PUBLIC) | |
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC) | |
is_delta_weight = gr.Checkbox(False, label="Delta weights") | |
base_model_name_textbox = gr.Textbox(label="base model (for delta)") | |
with gr.Row(): | |
submit_button = gr.Button("Submit Eval") | |
submit_button.click(add_new_eval, [model_name_textbox, base_model_name_textbox, revision_name_textbox, is_8bit_toggle, private, is_delta_weight]) | |
print("adding refresh leaderboard") | |
def refresh_leaderboard(): | |
leaderboard_table = get_leaderboard() | |
eval_table = get_eval_table() | |
print("refreshing leaderboard") | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(func=refresh_leaderboard, trigger="interval", seconds=300) # refresh every 5 mins | |
scheduler.start() | |
block.launch() |