Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pathlib | |
import pandas as pd | |
from src.display.formatting import has_no_nan_values, make_clickable_model | |
from src.display.utils import AutoEvalColumn, EvalQueueColumn, baseline_row | |
from src.leaderboard.filter_models import filter_models_flags | |
from src.leaderboard.read_evals import get_raw_eval_results | |
from src.display.utils import load_json_data | |
def _process_model_data(entry, model_name_key="model", revision_key="revision"): | |
"""Enrich model data with clickable links and revisions.""" | |
entry[EvalQueueColumn.model.name] = make_clickable_model(entry.get(model_name_key, "")) | |
entry[EvalQueueColumn.revision.name] = entry.get(revision_key, "main") | |
return entry | |
def get_evaluation_queue_df(save_path, cols): | |
"""Generate dataframes for pending, running, and finished evaluation entries.""" | |
save_path = pathlib.Path(save_path) | |
all_evals = [] | |
for path in save_path.rglob("*.json"): | |
data = load_json_data(path) | |
if data: | |
all_evals.append(_process_model_data(data)) | |
# Organizing data by status | |
status_map = { | |
"PENDING": ["PENDING", "RERUN"], | |
"RUNNING": ["RUNNING"], | |
"FINISHED": ["FINISHED", "PENDING_NEW_EVAL"], | |
} | |
status_dfs = {status: [] for status in status_map} | |
for eval_data in all_evals: | |
for status, extra_statuses in status_map.items(): | |
if eval_data["status"] in extra_statuses: | |
status_dfs[status].append(eval_data) | |
return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"]) | |
def get_leaderboard_df(results_path, requests_path, dynamic_path, cols, benchmark_cols): | |
"""Retrieve and process leaderboard data.""" | |
raw_data = get_raw_eval_results(results_path, requests_path, dynamic_path) | |
all_data_json = [model.to_dict() for model in raw_data] + [baseline_row] | |
filter_models_flags(all_data_json) | |
df = pd.DataFrame.from_records(all_data_json) | |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
df = df[cols].round(decimals=2) | |
df = df[has_no_nan_values(df, benchmark_cols)] | |
return raw_data, df | |