Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import os | |
import gradio as gr | |
from datetime import datetime, timezone | |
from dataclasses import dataclass | |
from transformers import AutoConfig | |
from src.display.formatting import styled_error, styled_message, styled_warning | |
from src.envs import ( | |
API, | |
EVAL_REQUESTS_PATH, | |
HF_TOKEN, | |
QUEUE_REPO, | |
RATE_LIMIT_PERIOD, | |
RATE_LIMIT_QUOTA, | |
) | |
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS | |
from src.submission.check_validity import ( | |
already_submitted_models, | |
check_model_card, | |
get_model_size, | |
is_model_on_hub, | |
user_submission_permission, | |
) | |
REQUESTED_MODELS = None | |
USERS_TO_SUBMISSION_DATES = None | |
class ModelSizeChecker: | |
model: str | |
precision: str | |
model_size_in_b: float | |
def get_precision_factor(self): | |
if self.precision in ["float16", "bfloat16"]: | |
return 1 | |
elif self.precision == "8bit": | |
return 2 | |
elif self.precision == "4bit": | |
return 4 | |
elif self.precision == "GPTQ": | |
config = AutoConfig.from_pretrained(self.model) | |
num_bits = int(config.quantization_config["bits"]) | |
bits_to_precision_factor = {2: 8, 3: 6, 4: 4, 8: 2} | |
return bits_to_precision_factor.get(num_bits, 1) | |
else: | |
raise Exception(f"Unknown precision {self.precision}.") | |
def can_evaluate(self): | |
precision_factor = self.get_precision_factor() | |
return self.model_size_in_b <= 140 * precision_factor | |
def add_new_eval( | |
model: str, | |
base_model: str, | |
revision: str, | |
precision: str, | |
weight_type: str, | |
model_type: str, | |
use_chat_template: bool, | |
profile: gr.OAuthProfile | None | |
): | |
# Login require | |
if profile is None: | |
return styled_error("Hub Login Required") | |
# Name of the actual user who sent the request | |
username = profile.username | |
global REQUESTED_MODELS | |
global USERS_TO_SUBMISSION_DATES | |
if not REQUESTED_MODELS: | |
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
org_or_user = "" | |
model_path = model | |
if "/" in model: | |
org_or_user = model.split("/")[0] | |
model_path = model.split("/")[1] | |
precision = precision.split(" ")[0] | |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
if model_type is None or model_type == "": | |
return styled_error("Please select a model type.") | |
# Is user submitting own model? | |
# Check that username in the org. | |
# if org_or_user != profile.username: | |
# Is the user rate limited? | |
if org_or_user != "": | |
user_can_submit, error_msg = user_submission_permission( | |
org_or_user, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA | |
) | |
if not user_can_submit: | |
return styled_error(error_msg) | |
# Did the model authors forbid its submission to the leaderboard? | |
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS: | |
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.") | |
# Does the model actually exist? | |
if revision == "": | |
revision = "main" | |
try: | |
model_info = API.model_info(repo_id=model, revision=revision) | |
except Exception as e: | |
return styled_error("Could not get your model information. Please fill it up properly.") | |
# Check model size early | |
model_size = get_model_size(model_info=model_info, precision=precision) | |
# First check: Absolute size limit for float16 and bfloat16 | |
if precision in ["float16", "bfloat16"] and model_size > 100: | |
return styled_error(f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. " | |
f"Your model size: {model_size:.2f}B parameters.") | |
# Second check: Precision-adjusted size limit for 8bit, 4bit, and GPTQ | |
if precision in ["8bit", "4bit", "GPTQ"]: | |
size_checker = ModelSizeChecker(model=model, precision=precision, model_size_in_b=model_size) | |
if not size_checker.can_evaluate(): | |
precision_factor = size_checker.get_precision_factor() | |
max_size = 140 * precision_factor | |
return styled_error(f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically " | |
f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters.") | |
architecture = "?" | |
# Is the model on the hub? | |
if weight_type in ["Delta", "Adapter"]: | |
base_model_on_hub, error, _ = is_model_on_hub( | |
model_name=base_model, revision="main", token=HF_TOKEN, test_tokenizer=True | |
) | |
if not base_model_on_hub: | |
return styled_error(f'Base model "{base_model}" {error}') | |
if not weight_type == "Adapter": | |
model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=model_info.sha, test_tokenizer=True) | |
if not model_on_hub or model_config is None: | |
return styled_error(f'Model "{model}" {error}') | |
if model_config is not None: | |
architectures = getattr(model_config, "architectures", None) | |
if architectures: | |
architecture = ";".join(architectures) | |
# Were the model card and license filled? | |
try: | |
model_info.cardData["license"] | |
except Exception: | |
return styled_error("Please select a license for your model") | |
modelcard_OK, error_msg, model_card = check_model_card(model) | |
if not modelcard_OK: | |
return styled_error(error_msg) | |
# Seems good, creating the eval | |
print("Adding new eval") | |
eval_entry = { | |
"model": model, | |
"base_model": base_model, | |
"revision": model_info.sha, # force to use the exact model commit | |
"precision": precision, | |
"params": model_size, | |
"architectures": architecture, | |
"weight_type": weight_type, | |
"status": "PENDING", | |
"submitted_time": current_time, | |
"model_type": model_type, | |
"job_id": -1, | |
"job_start_time": None, | |
"use_chat_template": use_chat_template, | |
"sender": username | |
} | |
print("Creating eval file") | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{org_or_user}" | |
os.makedirs(OUT_DIR, exist_ok=True) | |
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" | |
with open(out_path, "w") as f: | |
f.write(json.dumps(eval_entry)) | |
print("Uploading eval file") | |
print(eval_entry) | |
API.upload_file( | |
path_or_fileobj=out_path, | |
path_in_repo=out_path.split("eval-queue/")[1], | |
repo_id=QUEUE_REPO, | |
repo_type="dataset", | |
commit_message=f"Add {model} to eval queue", | |
) | |
# Remove the local file | |
os.remove(out_path) | |
return styled_message( | |
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
) | |