alozowski
add login at submit and user info
0b31d4e
raw
history blame
7.07 kB
import json
import os
import gradio as gr
from datetime import datetime, timezone
from dataclasses import dataclass
from transformers import AutoConfig
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import (
API,
EVAL_REQUESTS_PATH,
HF_TOKEN,
QUEUE_REPO,
RATE_LIMIT_PERIOD,
RATE_LIMIT_QUOTA,
)
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
user_submission_permission,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
@dataclass
class ModelSizeChecker:
model: str
precision: str
model_size_in_b: float
def get_precision_factor(self):
if self.precision in ["float16", "bfloat16"]:
return 1
elif self.precision == "8bit":
return 2
elif self.precision == "4bit":
return 4
elif self.precision == "GPTQ":
config = AutoConfig.from_pretrained(self.model)
num_bits = int(config.quantization_config["bits"])
bits_to_precision_factor = {2: 8, 3: 6, 4: 4, 8: 2}
return bits_to_precision_factor.get(num_bits, 1)
else:
raise Exception(f"Unknown precision {self.precision}.")
def can_evaluate(self):
precision_factor = self.get_precision_factor()
return self.model_size_in_b <= 140 * precision_factor
def add_new_eval(
model: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
use_chat_template: bool,
profile: gr.OAuthProfile | None
):
# Login require
if profile is None:
return styled_error("Hub Login Required")
# Name of the actual user who sent the request
username = profile.username
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
org_or_user = ""
model_path = model
if "/" in model:
org_or_user = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Is user submitting own model?
# Check that username in the org.
# if org_or_user != profile.username:
# Is the user rate limited?
if org_or_user != "":
user_can_submit, error_msg = user_submission_permission(
org_or_user, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
)
if not user_can_submit:
return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Does the model actually exist?
if revision == "":
revision = "main"
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception as e:
return styled_error("Could not get your model information. Please fill it up properly.")
# Check model size early
model_size = get_model_size(model_info=model_info, precision=precision)
# First check: Absolute size limit for float16 and bfloat16
if precision in ["float16", "bfloat16"] and model_size > 100:
return styled_error(f"Sadly, models larger than 100B parameters cannot be submitted in {precision} precision at this time. "
f"Your model size: {model_size:.2f}B parameters.")
# Second check: Precision-adjusted size limit for 8bit, 4bit, and GPTQ
if precision in ["8bit", "4bit", "GPTQ"]:
size_checker = ModelSizeChecker(model=model, precision=precision, model_size_in_b=model_size)
if not size_checker.can_evaluate():
precision_factor = size_checker.get_precision_factor()
max_size = 140 * precision_factor
return styled_error(f"Sadly, models this big ({model_size:.2f}B parameters) cannot be evaluated automatically "
f"at the moment on our cluster. The maximum size for {precision} precision is {max_size:.2f}B parameters.")
architecture = "?"
# Is the model on the hub?
if weight_type in ["Delta", "Adapter"]:
base_model_on_hub, error, _ = is_model_on_hub(
model_name=base_model, revision="main", token=HF_TOKEN, test_tokenizer=True
)
if not base_model_on_hub:
return styled_error(f'Base model "{base_model}" {error}')
if not weight_type == "Adapter":
model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=model_info.sha, test_tokenizer=True)
if not model_on_hub or model_config is None:
return styled_error(f'Model "{model}" {error}')
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Were the model card and license filled?
try:
model_info.cardData["license"]
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg, model_card = check_model_card(model)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"base_model": base_model,
"revision": model_info.sha, # force to use the exact model commit
"precision": precision,
"params": model_size,
"architectures": architecture,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"job_id": -1,
"job_start_time": None,
"use_chat_template": use_chat_template,
"sender": username
}
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{org_or_user}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
print(eval_entry)
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)