Spaces:
Sleeping
Sleeping
kz209
commited on
Commit
β’
5e8ccd5
1
Parent(s):
c52847e
update
Browse files- pages/summarization_playground.py +61 -14
- utils/model.py +4 -4
pages/summarization_playground.py
CHANGED
@@ -12,6 +12,60 @@ import logging
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
__model_on_gpu__ = ''
|
16 |
model = {model_name: None for model_name in Model.__model_list__}
|
17 |
|
@@ -53,14 +107,14 @@ def get_model_batch_generation(model_name):
|
|
53 |
return model[model_name]
|
54 |
|
55 |
|
56 |
-
def generate_answer(sources, model_name, prompt):
|
57 |
model_device_check(model_name)
|
58 |
content = prompt + '\n{' + sources + '}\n\nsummary:'
|
59 |
-
answer = model[model_name].gen(content)[0].strip()
|
60 |
|
61 |
return answer
|
62 |
|
63 |
-
def process_input(input_text, model_selection, prompt):
|
64 |
if input_text:
|
65 |
logging.info("Start generation")
|
66 |
response = generate_answer(input_text, model_selection, prompt)
|
@@ -75,13 +129,14 @@ def update_input(example):
|
|
75 |
return examples[example]
|
76 |
|
77 |
def create_summarization_interface():
|
78 |
-
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm",text_size="sm")) as demo:
|
79 |
gr.Markdown("## This is a playground to test prompts for clinical dialogue summarizations")
|
80 |
|
81 |
with gr.Row():
|
82 |
example_dropdown = gr.Dropdown(choices=list(examples.keys()), label="Choose an example", value=random_label)
|
83 |
model_dropdown = gr.Dropdown(choices=Model.__model_list__, label="Choose a model", value=Model.__model_list__[0])
|
84 |
|
|
|
85 |
Template_text = gr.Textbox(value="""Summarize the following dialogue""", label='Input Prompting Template', lines=8, placeholder='Input your prompts')
|
86 |
datapoint = random.choice(dataset)
|
87 |
input_text = gr.Textbox(label="Input Dialogue", lines=10, placeholder="Enter text here...", value=datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue'])
|
@@ -89,24 +144,16 @@ def create_summarization_interface():
|
|
89 |
|
90 |
with gr.Row():
|
91 |
with gr.Row():
|
92 |
-
with gr.Column():
|
93 |
-
gr.Markdown("<div style='border: 4px solid white; padding: 3px; border-radius: 5px;width:100px;padding-top: 0.5px;padding-bottom: 10px;'><h3>Prompt π₯</h3></center></div>")
|
94 |
-
prompt = gr.Textbox(label="Input", lines=6, placeholder = "Enter the Patient-Doctor conversation here.",elem_classes=["bordered-text"])
|
95 |
-
context = gr.Textbox(label="Context", placeholder="Enter relevant context about the patient medical history.",elem_classes="bordered-text")
|
96 |
-
token = gr.Textbox(label="Token",elem_classes="bordered-text")
|
97 |
with gr.Column():
|
98 |
gr.Markdown("<div style='border: 4px solid white; padding: 2px; border-radius: 5px;width:130px;padding-bottom: 10px;'><b><h3>Parameters π</h3></center></b></div>")
|
99 |
-
with gr.Column():
|
100 |
-
topK = gr.Textbox(label="TopP",elem_classes="bordered-text")
|
101 |
-
topP = gr.Textbox(label="TopK",elem_classes="bordered-text")
|
102 |
temperature = gr.Textbox(label="Temperature",elem_classes="parameter-text")
|
103 |
max_new_tokens = gr.Textbox(label="Max New Tokens",elem_classes="parameter-text")
|
104 |
do_sample = gr.Dropdown(['Default','None'],label="Do Sample",elem_classes="parameter-text")
|
105 |
-
return_text = gr.Dropdown(['Default','None'],label="Return Text",elem_classes="parameter-text")
|
106 |
output = gr.Markdown(line_breaks=True)
|
107 |
|
108 |
example_dropdown.change(update_input, inputs=[example_dropdown], outputs=[input_text])
|
109 |
-
submit_button.click(process_input, inputs=[input_text,
|
110 |
|
111 |
return demo
|
112 |
|
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
15 |
+
custom_css = """
|
16 |
+
gradio-app {
|
17 |
+
background: #eeeefc !important;
|
18 |
+
}
|
19 |
+
.bordered-text {
|
20 |
+
border-style: solid;
|
21 |
+
border-width: 1px;
|
22 |
+
padding: 5px;
|
23 |
+
margin-bottom: 0px;
|
24 |
+
border-radius: 1px;
|
25 |
+
font-family: Verdana;
|
26 |
+
font-size: 20px !important;
|
27 |
+
font-weight: bold ;
|
28 |
+
color:#000000;
|
29 |
+
}
|
30 |
+
.parameter-text {
|
31 |
+
border-style: solid;
|
32 |
+
border-width: 1px;
|
33 |
+
padding: 5px;
|
34 |
+
margin-bottom: 0px;
|
35 |
+
border-radius: 1px;
|
36 |
+
font-family: Verdana;
|
37 |
+
font-size: 10px !important;
|
38 |
+
font-weight: bold ;
|
39 |
+
color:#000000;
|
40 |
+
}
|
41 |
+
.title {
|
42 |
+
font-size: 35px;
|
43 |
+
font-weight: maroon;
|
44 |
+
font-family: Helvetica;
|
45 |
+
}
|
46 |
+
input-label {
|
47 |
+
font-size: 20px;
|
48 |
+
font-weight: bold;
|
49 |
+
font-family: Papyrus;
|
50 |
+
}
|
51 |
+
.custom-button {
|
52 |
+
background-color: white !important /* Green background */
|
53 |
+
color: black; /* White text */
|
54 |
+
border: none; /* Remove border */
|
55 |
+
padding: 10px 20px; /* Add padding */
|
56 |
+
text-align: center; /* Center text */
|
57 |
+
display: inline-block; /* Inline block */
|
58 |
+
font-size: 22px; /* Font size */
|
59 |
+
margin: 4px 2px; /* Margin */
|
60 |
+
cursor: pointer; /* Pointer cursor on hover */
|
61 |
+
border-radius: 4px; /* Rounded corners */
|
62 |
+
}
|
63 |
+
.custom-button:hover {
|
64 |
+
background-color: black;
|
65 |
+
color: white;
|
66 |
+
}
|
67 |
+
"""
|
68 |
+
|
69 |
__model_on_gpu__ = ''
|
70 |
model = {model_name: None for model_name in Model.__model_list__}
|
71 |
|
|
|
107 |
return model[model_name]
|
108 |
|
109 |
|
110 |
+
def generate_answer(sources, model_name, prompt, temperature, max_new_tokens, do_sample):
|
111 |
model_device_check(model_name)
|
112 |
content = prompt + '\n{' + sources + '}\n\nsummary:'
|
113 |
+
answer = model[model_name].gen(content,temperature,max_new_tokens,do_sample)[0].strip()
|
114 |
|
115 |
return answer
|
116 |
|
117 |
+
def process_input(input_text, model_selection, prompt, temperature, max_new_tokens, do_sample):
|
118 |
if input_text:
|
119 |
logging.info("Start generation")
|
120 |
response = generate_answer(input_text, model_selection, prompt)
|
|
|
129 |
return examples[example]
|
130 |
|
131 |
def create_summarization_interface():
|
132 |
+
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm",text_size="sm"), css=custom_css) as demo:
|
133 |
gr.Markdown("## This is a playground to test prompts for clinical dialogue summarizations")
|
134 |
|
135 |
with gr.Row():
|
136 |
example_dropdown = gr.Dropdown(choices=list(examples.keys()), label="Choose an example", value=random_label)
|
137 |
model_dropdown = gr.Dropdown(choices=Model.__model_list__, label="Choose a model", value=Model.__model_list__[0])
|
138 |
|
139 |
+
gr.Markdown("<div style='border: 4px solid white; padding: 3px; border-radius: 5px;width:100px;padding-top: 0.5px;padding-bottom: 10px;'><h3>Prompt π₯</h3></center></div>")
|
140 |
Template_text = gr.Textbox(value="""Summarize the following dialogue""", label='Input Prompting Template', lines=8, placeholder='Input your prompts')
|
141 |
datapoint = random.choice(dataset)
|
142 |
input_text = gr.Textbox(label="Input Dialogue", lines=10, placeholder="Enter text here...", value=datapoint['section_text'] + '\n\nDialogue:\n' + datapoint['dialogue'])
|
|
|
144 |
|
145 |
with gr.Row():
|
146 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
147 |
with gr.Column():
|
148 |
gr.Markdown("<div style='border: 4px solid white; padding: 2px; border-radius: 5px;width:130px;padding-bottom: 10px;'><b><h3>Parameters π</h3></center></b></div>")
|
149 |
+
with gr.Column(theme=gr.themes.Soft(spacing_size="sm",text_size="sm")):
|
|
|
|
|
150 |
temperature = gr.Textbox(label="Temperature",elem_classes="parameter-text")
|
151 |
max_new_tokens = gr.Textbox(label="Max New Tokens",elem_classes="parameter-text")
|
152 |
do_sample = gr.Dropdown(['Default','None'],label="Do Sample",elem_classes="parameter-text")
|
|
|
153 |
output = gr.Markdown(line_breaks=True)
|
154 |
|
155 |
example_dropdown.change(update_input, inputs=[example_dropdown], outputs=[input_text])
|
156 |
+
submit_button.click(process_input, inputs=[input_text,model_dropdown,Template_text,temperature,max_new_tokens,do_sample], outputs=[output])
|
157 |
|
158 |
return demo
|
159 |
|
utils/model.py
CHANGED
@@ -55,14 +55,14 @@ class Model(torch.nn.Module):
|
|
55 |
def return_model(self):
|
56 |
return self.model
|
57 |
|
58 |
-
def streaming(self, content_list, temp=0.001, max_length=500):
|
59 |
# Convert list of texts to input IDs
|
60 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
61 |
|
62 |
# Set up the initial generation parameters
|
63 |
gen_kwargs = {
|
64 |
"input_ids": input_ids,
|
65 |
-
"do_sample":
|
66 |
"temperature": temp,
|
67 |
"eos_token_id": self.tokenizer.eos_token_id,
|
68 |
"max_new_tokens": 1, # Generate one token at a time
|
@@ -96,7 +96,7 @@ class Model(torch.nn.Module):
|
|
96 |
gen_kwargs["input_ids"] = gen_kwargs["input_ids"][active_sequences]
|
97 |
|
98 |
|
99 |
-
def gen(self, content_list, temp=0.001, max_length=500):
|
100 |
# Convert list of texts to input IDs
|
101 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
102 |
|
@@ -104,7 +104,7 @@ class Model(torch.nn.Module):
|
|
104 |
outputs = self.model.generate(
|
105 |
input_ids,
|
106 |
max_new_tokens=max_length,
|
107 |
-
do_sample=
|
108 |
temperature=temp,
|
109 |
eos_token_id=self.tokenizer.eos_token_id,
|
110 |
)
|
|
|
55 |
def return_model(self):
|
56 |
return self.model
|
57 |
|
58 |
+
def streaming(self, content_list, temp=0.001, max_length=500, do_sample=True):
|
59 |
# Convert list of texts to input IDs
|
60 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
61 |
|
62 |
# Set up the initial generation parameters
|
63 |
gen_kwargs = {
|
64 |
"input_ids": input_ids,
|
65 |
+
"do_sample": do_sample,
|
66 |
"temperature": temp,
|
67 |
"eos_token_id": self.tokenizer.eos_token_id,
|
68 |
"max_new_tokens": 1, # Generate one token at a time
|
|
|
96 |
gen_kwargs["input_ids"] = gen_kwargs["input_ids"][active_sequences]
|
97 |
|
98 |
|
99 |
+
def gen(self, content_list, temp=0.001, max_length=500, do_sample=True):
|
100 |
# Convert list of texts to input IDs
|
101 |
input_ids = self.tokenizer(content_list, return_tensors="pt", padding=True, truncation=True).input_ids.to(self.model.device)
|
102 |
|
|
|
104 |
outputs = self.model.generate(
|
105 |
input_ids,
|
106 |
max_new_tokens=max_length,
|
107 |
+
do_sample=do_sample,
|
108 |
temperature=temp,
|
109 |
eos_token_id=self.tokenizer.eos_token_id,
|
110 |
)
|