Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
osanseviero
commited on
Commit
•
1581d20
1
Parent(s):
44bb8e2
Launch
Browse files
models.py
CHANGED
@@ -6,564 +6,570 @@ import altair as alt
|
|
6 |
import plotly.graph_objs as go
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
data["tags"] = data.apply(eval_tags, axis=1)
|
70 |
-
|
71 |
-
total_samples = data.shape[0]
|
72 |
-
st.metric(label="Total models", value=total_samples)
|
73 |
-
|
74 |
-
# Tabs don't work in Spaces st version
|
75 |
-
#tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])
|
76 |
-
|
77 |
-
tab = st.selectbox(
|
78 |
-
'Topic of interest',
|
79 |
-
["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])
|
80 |
-
|
81 |
-
# with tab1:
|
82 |
-
if tab == "Language":
|
83 |
-
st.header("Languages info")
|
84 |
-
|
85 |
-
data.loc[data.languages == "False", 'languages'] = None
|
86 |
-
data.loc[data.languages == {}, 'languages'] = None
|
87 |
-
|
88 |
-
no_lang_count = data["languages"].isna().sum()
|
89 |
-
data["languages"] = data["languages"].fillna('none')
|
90 |
-
|
91 |
-
def make_list(row):
|
92 |
-
languages = row["languages"]
|
93 |
-
if languages == "none":
|
94 |
return []
|
95 |
-
return
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
filter = 0
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
with col2:
|
170 |
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
st.
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
filter = 0
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
d =
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
filter = 0
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
)
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
st.
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
st.
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
"
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
#with tab5:
|
438 |
-
if tab == "Libraries":
|
439 |
-
st.header("Library info")
|
440 |
-
|
441 |
-
no_library_count = data["library"].isna().sum()
|
442 |
-
col1, col2, col3 = st.columns(3)
|
443 |
-
with col1:
|
444 |
-
st.metric(label="# models that have any library", value=total_samples-no_library_count)
|
445 |
-
with col2:
|
446 |
-
st.metric(label="No library Specified", value=no_library_count)
|
447 |
-
with col3:
|
448 |
-
st.metric(label="Total Unique library", value=len(data["library"].unique()))
|
449 |
-
|
450 |
-
|
451 |
-
st.subheader("High-level metrics")
|
452 |
-
filtered_data = data[data['library'].notna()]
|
453 |
-
|
454 |
-
col1, col2 = st.columns(2)
|
455 |
-
with col1:
|
456 |
-
lib = st.selectbox(
|
457 |
-
'What library do you want to see? ',
|
458 |
-
["all", *filtered_data["library"].unique()]
|
459 |
)
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
)
|
|
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
|
473 |
-
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
|
474 |
-
final_data = pd.merge(
|
475 |
-
d, grouped_data, how="outer", on="library"
|
476 |
-
)
|
477 |
-
sums = grouped_data.sum()
|
478 |
-
|
479 |
-
col1, col2, col3 = st.columns(3)
|
480 |
-
with col1:
|
481 |
-
st.metric(label="Total models", value=filtered_data.shape[0])
|
482 |
-
with col2:
|
483 |
-
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
484 |
-
with col3:
|
485 |
-
st.metric(label="Cumulative likes", value=sums["likes"])
|
486 |
-
|
487 |
-
st.subheader("Most common library types (Learn more in library tab)")
|
488 |
-
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
489 |
-
st.write(alt.Chart(d).mark_bar().encode(
|
490 |
-
x='counts',
|
491 |
-
y=alt.X('library', sort=None)
|
492 |
-
))
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
st.subheader("Aggregated Data")
|
497 |
-
st.dataframe(final_data)
|
498 |
-
|
499 |
-
st.subheader("Raw Data")
|
500 |
-
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
|
501 |
-
filtered_data = filtered_data[columns_of_interest]
|
502 |
-
st.dataframe(filtered_data)
|
503 |
-
|
504 |
-
#with tab6:
|
505 |
-
if tab == "Model Cards":
|
506 |
-
st.header("Model cards")
|
507 |
-
|
508 |
-
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
|
509 |
-
rows = data.shape[0]
|
510 |
-
|
511 |
-
cond = data["has_model_index"] | data["has_text"]
|
512 |
-
with_model_card = data[cond]
|
513 |
-
c_model_card = with_model_card.shape[0]
|
514 |
-
st.subheader("High-level metrics")
|
515 |
-
col1, col2, col3 = st.columns(3)
|
516 |
-
with col1:
|
517 |
-
st.metric(label="# models with model card file", value=c_model_card)
|
518 |
-
with col2:
|
519 |
-
st.metric(label="# models without model card file", value=rows-c_model_card)
|
520 |
-
|
521 |
-
with_index = data["has_model_index"].sum()
|
522 |
-
with col1:
|
523 |
-
st.metric(label="# models with model index", value=with_index)
|
524 |
-
with col2:
|
525 |
-
st.metric(label="# models without model index", value=rows-with_index)
|
526 |
-
|
527 |
-
with_text = data["has_text"]
|
528 |
-
with col1:
|
529 |
-
st.metric(label="# models with model card text", value=with_text.sum())
|
530 |
-
with col2:
|
531 |
-
st.metric(label="# models without model card text", value=rows-with_text.sum())
|
532 |
-
|
533 |
-
|
534 |
-
st.subheader("Length (chars) of model card content")
|
535 |
-
fig, ax = plt.subplots()
|
536 |
-
ax = data["length_bins"].value_counts().plot.bar()
|
537 |
-
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
|
538 |
-
st.pyplot(fig)
|
539 |
-
|
540 |
-
st.subheader("Tags (Read more in Pipeline tab)")
|
541 |
-
tags = data["tags"].explode()
|
542 |
-
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
543 |
-
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
544 |
-
x='counts',
|
545 |
-
y=alt.X('tag', sort=None)
|
546 |
-
))
|
547 |
-
|
548 |
-
#with tab7:
|
549 |
-
if tab == "Super Users":
|
550 |
-
st.header("Authors")
|
551 |
-
st.text("This info corresponds to the repos owned by the authors")
|
552 |
-
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0", "language_count"], axis=1).sort_values("downloads_30d", ascending=False)
|
553 |
-
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
|
554 |
-
final_data = pd.merge(
|
555 |
-
d, authors, how="outer", on="author"
|
556 |
-
)
|
557 |
-
st.dataframe(final_data)
|
558 |
-
|
559 |
-
#with tab2:
|
560 |
-
if tab == "Raw Data":
|
561 |
-
st.header("Raw Data")
|
562 |
-
d = data.astype(str)
|
563 |
-
st.dataframe(d)
|
564 |
-
|
565 |
|
566 |
|
|
|
|
|
567 |
|
568 |
|
569 |
|
|
|
6 |
import plotly.graph_objs as go
|
7 |
import matplotlib.pyplot as plt
|
8 |
|
9 |
+
def main():
|
10 |
+
print("Build")
|
11 |
+
nlp_tasks = ["text-classification", "text-generation", "text2text-generation", "token-classification", "fill-mask", "question-answering",
|
12 |
+
"translation", "conversational", "sentence-similarity", "summarization", "multiple-choice", "zero-shot-classification", "table-question-answering"
|
13 |
+
]
|
14 |
+
audio_tasks = ["automatic-speech-recognition", "audio-classification", "text-to-speech", "audio-to-audio", "voice-activity-detection"]
|
15 |
+
cv_tasks = ["image-classification", "image-segmentation", "zero-shot-image-classification", "image-to-image", "unconditional-image-generation", "object-detection"]
|
16 |
+
multimodal = ["feature-extraction", "text-to-image", "visual-question-answering", "image-to-text", "document-question-answering"]
|
17 |
+
tabular = ["tabular-classification", "tabular-regression"]
|
18 |
+
|
19 |
+
modalities = {
|
20 |
+
"nlp": nlp_tasks,
|
21 |
+
"audio": audio_tasks,
|
22 |
+
"cv": cv_tasks,
|
23 |
+
"multimodal": multimodal,
|
24 |
+
"tabular": tabular,
|
25 |
+
"rl": ["reinforcement-learning"]
|
26 |
+
}
|
27 |
+
|
28 |
+
def modality(row):
|
29 |
+
pipeline = row["pipeline"]
|
30 |
+
for modality, tasks in modalities.items():
|
31 |
+
if pipeline in tasks:
|
32 |
+
return modality
|
33 |
+
if type(pipeline) == "str":
|
34 |
+
return "unk_modality"
|
35 |
+
return None
|
36 |
+
|
37 |
+
supported_revisions = ["27_09_22"]
|
38 |
+
|
39 |
+
st.cache(allow_output_mutation=True)
|
40 |
+
def process_dataset(version):
|
41 |
+
# Load dataset at specified revision
|
42 |
+
dataset = load_dataset("open-source-metrics/model-repos-stats", revision=version)
|
43 |
+
|
44 |
+
# Convert to pandas dataframe
|
45 |
+
data = dataset["train"].to_pandas()
|
46 |
+
|
47 |
+
# Add modality column
|
48 |
+
data["modality"] = data.apply(modality, axis=1)
|
49 |
+
|
50 |
+
# Bin the model card length into some bins
|
51 |
+
data["length_bins"] = pd.cut(data["text_length"], [0, 200, 1000, 2000, 3000, 4000, 5000, 7500, 10000, 20000, 50000])
|
52 |
+
|
53 |
+
return data
|
54 |
+
|
55 |
+
base = st.selectbox(
|
56 |
+
'What revision do you want to use',
|
57 |
+
supported_revisions)
|
58 |
+
data = process_dataset(base)
|
59 |
+
|
60 |
+
def eval_tags(row):
|
61 |
+
tags = row["tags"]
|
62 |
+
if tags == "none" or tags == [] or tags == "{}":
|
63 |
+
return []
|
64 |
+
if tags[0] != "[":
|
65 |
+
tags = str([tags])
|
66 |
+
val = literal_eval(tags)
|
67 |
+
if isinstance(val, dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return []
|
69 |
+
return val
|
70 |
+
|
71 |
+
data["tags"] = data.apply(eval_tags, axis=1)
|
72 |
+
|
73 |
+
total_samples = data.shape[0]
|
74 |
+
st.metric(label="Total models", value=total_samples)
|
75 |
+
|
76 |
+
# Tabs don't work in Spaces st version
|
77 |
+
#tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super users", "Raw Data"])
|
78 |
+
|
79 |
+
tab = st.selectbox(
|
80 |
+
'Topic of interest',
|
81 |
+
["Language", "License", "Pipeline", "Discussion Features", "Libraries", "Model Cards", "Super Users", "Raw Data"])
|
82 |
+
|
83 |
+
# with tab1:
|
84 |
+
if tab == "Language":
|
85 |
+
st.header("Languages info")
|
86 |
+
|
87 |
+
data.loc[data.languages == "False", 'languages'] = None
|
88 |
+
data.loc[data.languages == {}, 'languages'] = None
|
89 |
+
|
90 |
+
no_lang_count = data["languages"].isna().sum()
|
91 |
+
data["languages"] = data["languages"].fillna('none')
|
92 |
+
|
93 |
+
def make_list(row):
|
94 |
+
languages = row["languages"]
|
95 |
+
if languages == "none":
|
96 |
+
return []
|
97 |
+
return literal_eval(languages)
|
98 |
+
|
99 |
+
def language_count(row):
|
100 |
+
languages = row["languages"]
|
101 |
+
leng = len(languages)
|
102 |
+
return leng
|
103 |
+
|
104 |
+
data["languages"] = data.apply(make_list, axis=1)
|
105 |
+
data["language_count"] = data.apply(language_count, axis=1)
|
106 |
+
|
107 |
+
models_with_langs = data[data["language_count"] > 0]
|
108 |
+
langs = models_with_langs["languages"].explode()
|
109 |
+
langs = langs[langs != {}]
|
110 |
+
total_langs = len(langs.unique())
|
111 |
+
|
112 |
+
col1, col2, col3 = st.columns(3)
|
113 |
+
with col1:
|
114 |
+
st.metric(label="Language Specified", value=total_samples-no_lang_count)
|
115 |
+
with col2:
|
116 |
+
st.metric(label="No Language Specified", value=no_lang_count)
|
117 |
+
with col3:
|
118 |
+
st.metric(label="Total Unique Languages", value=total_langs)
|
119 |
+
|
120 |
+
st.subheader("Count of languages per model repo")
|
121 |
+
st.text("Some repos are for multiple languages, so the count is greater than 1")
|
122 |
+
linguality = st.selectbox(
|
123 |
+
'All or just Multilingual',
|
124 |
+
["All", "Just Multilingual", "Three or more languages"])
|
125 |
+
|
126 |
filter = 0
|
127 |
+
st.text("Tofix: This just takes into account count of languages, it misses the multilingual tag")
|
128 |
+
if linguality == "Just Multilingual":
|
129 |
+
filter = 1
|
130 |
+
elif linguality == "Three or more languages":
|
131 |
+
filter = 2
|
132 |
+
|
133 |
+
models_with_langs = data[data["language_count"] > filter]
|
134 |
+
df1 = models_with_langs['language_count'].value_counts()
|
135 |
+
st.bar_chart(df1)
|
136 |
+
|
137 |
+
st.subheader("Most frequent languages")
|
138 |
+
linguality_2 = st.selectbox(
|
139 |
+
'All or filtered',
|
140 |
+
["All", "No English", "Remove top 10"])
|
141 |
+
|
142 |
+
filter = 0
|
143 |
+
if linguality_2 == "All":
|
144 |
+
filter = 0
|
145 |
+
elif linguality_2 == "No English":
|
146 |
+
filter = 1
|
147 |
+
else:
|
148 |
+
filter = 2
|
149 |
+
|
150 |
+
models_with_langs = data[data["language_count"] > 0]
|
151 |
+
langs = models_with_langs["languages"].explode()
|
152 |
+
langs = langs[langs != {}]
|
153 |
+
|
|
|
154 |
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
155 |
+
if filter == 1:
|
156 |
+
d = d.iloc[1:]
|
157 |
+
elif filter == 2:
|
158 |
+
d = d.iloc[10:]
|
159 |
+
|
160 |
+
# Just keep top 25 to avoid vertical scroll
|
161 |
+
d = d.iloc[:25]
|
162 |
+
|
163 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
164 |
+
x='counts',
|
165 |
+
y=alt.X('language', sort=None)
|
166 |
+
))
|
167 |
+
|
168 |
+
st.subheader("Raw Data")
|
169 |
+
col1, col2 = st.columns(2)
|
170 |
+
with col1:
|
171 |
+
l = df1.rename_axis("lang_count").reset_index().rename(columns={"language_count": "repos_count"})
|
172 |
+
print(l)
|
173 |
+
st.dataframe(l)
|
174 |
+
with col2:
|
175 |
+
d = langs.value_counts().rename_axis("language").to_frame('counts').reset_index()
|
176 |
+
st.dataframe(d)
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
#with tab2:
|
181 |
+
if tab == "License":
|
182 |
+
st.header("License info")
|
183 |
+
|
184 |
+
no_license_count = data["license"].isna().sum()
|
185 |
+
col1, col2, col3 = st.columns(3)
|
186 |
+
with col1:
|
187 |
+
st.metric(label="License Specified", value=total_samples-no_license_count)
|
188 |
+
with col2:
|
189 |
+
st.metric(label="No license Specified", value=no_license_count)
|
190 |
+
with col3:
|
191 |
+
st.metric(label="Total Unique Licenses", value=len(data["license"].unique()))
|
192 |
+
|
193 |
+
st.subheader("Distribution of licenses per model repo")
|
194 |
+
license_filter = st.selectbox(
|
195 |
+
'All or filtered',
|
196 |
+
["All", "No Apache 2.0", "Remove top 10"])
|
197 |
+
|
198 |
filter = 0
|
199 |
+
if license_filter == "All":
|
200 |
+
filter = 0
|
201 |
+
elif license_filter == "No Apache 2.0":
|
202 |
+
filter = 1
|
203 |
+
else:
|
204 |
+
filter = 2
|
205 |
+
|
206 |
+
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
207 |
+
if filter == 1:
|
208 |
+
d = d.iloc[1:]
|
209 |
+
elif filter == 2:
|
210 |
+
d = d.iloc[10:]
|
211 |
+
|
212 |
+
# Just keep top 25 to avoid vertical scroll
|
213 |
+
d = d.iloc[:25]
|
214 |
+
|
215 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
216 |
+
x='counts',
|
217 |
+
y=alt.X('license', sort=None)
|
218 |
+
))
|
219 |
+
st.text("There are some edge cases, as old repos using lists of licenses.")
|
220 |
+
|
221 |
+
st.subheader("Raw Data")
|
222 |
+
d = data["license"].value_counts().rename_axis("license").to_frame('counts').reset_index()
|
223 |
+
st.dataframe(d)
|
224 |
+
|
225 |
+
#with tab3:
|
226 |
+
if tab == "Pipeline":
|
227 |
+
st.header("Pipeline info")
|
228 |
+
|
229 |
+
tags = data["tags"].explode()
|
230 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
231 |
+
s = tags["tag"]
|
232 |
+
s = s[s.apply(type) == str]
|
233 |
+
unique_tags = len(s.unique())
|
234 |
+
|
235 |
+
no_pipeline_count = data["pipeline"].isna().sum()
|
236 |
+
col1, col2, col3 = st.columns(3)
|
237 |
+
with col1:
|
238 |
+
st.metric(label="# models that have any pipeline", value=total_samples-no_pipeline_count)
|
239 |
+
with col2:
|
240 |
+
st.metric(label="No pipeline Specified", value=no_pipeline_count)
|
241 |
+
with col3:
|
242 |
+
st.metric(label="Total Unique Pipelines", value=len(data["pipeline"].unique()))
|
243 |
+
|
244 |
+
pipeline_filter = st.selectbox(
|
245 |
+
'Modalities',
|
246 |
+
["All", "NLP", "CV", "Audio", "RL", "Multimodal", "Tabular"])
|
247 |
+
|
248 |
filter = 0
|
249 |
+
if pipeline_filter == "All":
|
250 |
+
filter = 0
|
251 |
+
elif pipeline_filter == "NLP":
|
252 |
+
filter = 1
|
253 |
+
elif pipeline_filter == "CV":
|
254 |
+
filter = 2
|
255 |
+
elif pipeline_filter == "Audio":
|
256 |
+
filter = 3
|
257 |
+
elif pipeline_filter == "RL":
|
258 |
+
filter = 4
|
259 |
+
elif pipeline_filter == "Multimodal":
|
260 |
+
filter = 5
|
261 |
+
elif pipeline_filter == "Tabular":
|
262 |
+
filter = 6
|
263 |
+
|
264 |
+
st.subheader("High-level metrics")
|
265 |
+
filtered_data = data[data['pipeline'].notna()]
|
266 |
+
|
267 |
+
if filter == 1:
|
268 |
+
filtered_data = data[data["modality"] == "nlp"]
|
269 |
+
elif filter == 2:
|
270 |
+
filtered_data = data[data["modality"] == "cv"]
|
271 |
+
elif filter == 3:
|
272 |
+
filtered_data = data[data["modality"] == "audio"]
|
273 |
+
elif filter == 4:
|
274 |
+
filtered_data = data[data["modality"] == "rl"]
|
275 |
+
elif filter == 5:
|
276 |
+
filtered_data = data[data["modality"] == "multimodal"]
|
277 |
+
elif filter == 6:
|
278 |
+
filtered_data = data[data["modality"] == "tabular"]
|
279 |
+
|
280 |
+
col1, col2, col3 = st.columns(3)
|
281 |
+
with col1:
|
282 |
+
p = st.selectbox(
|
283 |
+
'What pipeline do you want to see?',
|
284 |
+
["all", *filtered_data["pipeline"].unique()]
|
285 |
+
)
|
286 |
+
with col2:
|
287 |
+
l = st.selectbox(
|
288 |
+
'What library do you want to see?',
|
289 |
+
["all", *filtered_data["library"].unique()]
|
290 |
+
)
|
291 |
+
with col3:
|
292 |
+
f = st.selectbox(
|
293 |
+
'What framework support? (transformers)',
|
294 |
+
["all", "py", "tf", "jax"]
|
295 |
+
)
|
296 |
+
|
297 |
+
col1, col2 = st.columns(2)
|
298 |
+
with col1:
|
299 |
+
filt = st.multiselect(
|
300 |
+
label="Tags (All by default)",
|
301 |
+
options=s.unique(),
|
302 |
+
default=None)
|
303 |
+
with col2:
|
304 |
+
o = st.selectbox(
|
305 |
+
label="Operation (for tags)",
|
306 |
+
options=["Any", "All", "None"]
|
307 |
+
)
|
308 |
+
|
309 |
+
def filter_fn(row):
|
310 |
+
tags = row["tags"]
|
311 |
+
tags[:] = [d for d in tags if isinstance(d, str)]
|
312 |
+
if o == "All":
|
313 |
+
if all(elem in tags for elem in filt):
|
314 |
+
return True
|
315 |
+
|
316 |
+
s1 = set(tags)
|
317 |
+
s2 = set(filt)
|
318 |
+
if o == "Any":
|
319 |
+
if bool(s1 & s2):
|
320 |
+
return True
|
321 |
+
if o == "None":
|
322 |
+
if len(s1.intersection(s2)) == 0:
|
323 |
+
return True
|
324 |
+
return False
|
325 |
+
|
326 |
+
|
327 |
+
if p != "all":
|
328 |
+
filtered_data = filtered_data[filtered_data["pipeline"] == p]
|
329 |
+
if l != "all":
|
330 |
+
filtered_data = filtered_data[filtered_data["library"] == l]
|
331 |
+
if f != "all":
|
332 |
+
if f == "py":
|
333 |
+
filtered_data = filtered_data[filtered_data["pytorch"] == 1]
|
334 |
+
elif f == "tf":
|
335 |
+
filtered_data = filtered_data[filtered_data["tensorflow"] == 1]
|
336 |
+
elif f == "jax":
|
337 |
+
filtered_data = filtered_data[filtered_data["jax"] == 1]
|
338 |
+
if filt != []:
|
339 |
+
filtered_data = filtered_data[filtered_data.apply(filter_fn, axis=1)]
|
340 |
+
|
341 |
+
|
342 |
+
d = filtered_data["pipeline"].value_counts().rename_axis("pipeline").to_frame('counts').reset_index()
|
343 |
+
columns_of_interest = ["downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
|
344 |
+
grouped_data = filtered_data.groupby("pipeline").sum()[columns_of_interest]
|
345 |
+
final_data = pd.merge(
|
346 |
+
d, grouped_data, how="outer", on="pipeline"
|
347 |
)
|
348 |
+
sums = grouped_data.sum()
|
349 |
+
|
350 |
+
col1, col2, col3 = st.columns(3)
|
351 |
+
with col1:
|
352 |
+
st.metric(label="Total models", value=filtered_data.shape[0])
|
353 |
+
with col2:
|
354 |
+
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
355 |
+
with col3:
|
356 |
+
st.metric(label="Cumulative likes", value=sums["likes"])
|
357 |
+
|
358 |
+
col1, col2, col3 = st.columns(3)
|
359 |
+
with col1:
|
360 |
+
st.metric(label="Total in PT", value=sums["pytorch"])
|
361 |
+
with col2:
|
362 |
+
st.metric(label="Total in TF", value=sums["tensorflow"])
|
363 |
+
with col3:
|
364 |
+
st.metric(label="Total in JAX", value=sums["jax"])
|
365 |
+
|
366 |
+
st.metric(label="Unique Tags", value=unique_tags)
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
st.subheader("Count of models per pipeline")
|
371 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
372 |
+
x='counts',
|
373 |
+
y=alt.X('pipeline', sort=None)
|
374 |
+
))
|
375 |
+
|
376 |
+
st.subheader("Aggregated data")
|
377 |
+
st.dataframe(final_data)
|
378 |
+
|
379 |
+
st.subheader("Most common model types (specific to transformers)")
|
380 |
+
d = filtered_data["model_type"].value_counts().rename_axis("model_type").to_frame('counts').reset_index()
|
381 |
+
d = d.iloc[:15]
|
382 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
383 |
+
x='counts',
|
384 |
+
y=alt.X('model_type', sort=None)
|
385 |
+
))
|
386 |
+
|
387 |
+
st.subheader("Most common library types (Learn more in library tab)")
|
388 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
389 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
390 |
+
x='counts',
|
391 |
+
y=alt.X('library', sort=None)
|
392 |
+
))
|
393 |
+
|
394 |
+
st.subheader("Tags by count")
|
395 |
+
tags = filtered_data["tags"].explode()
|
396 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
397 |
+
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
398 |
+
x='counts',
|
399 |
+
y=alt.X('tag', sort=None)
|
400 |
+
))
|
401 |
+
|
402 |
+
st.subheader("Raw Data")
|
403 |
+
columns_of_interest = [
|
404 |
+
"repo_id", "author", "model_type", "files_per_repo", "library",
|
405 |
+
"downloads_30d", "likes", "pytorch", "tensorflow", "jax"]
|
406 |
+
raw_data = filtered_data[columns_of_interest]
|
407 |
+
st.dataframe(raw_data)
|
408 |
+
|
409 |
+
|
410 |
+
|
411 |
+
# todo : add activity metric
|
412 |
+
|
413 |
+
|
414 |
+
#with tab4:
|
415 |
+
if tab == "Discussion Features":
|
416 |
+
st.header("Discussions Tab info")
|
417 |
+
|
418 |
+
columns_of_interest = ["prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]
|
419 |
+
sums = data[columns_of_interest].sum()
|
420 |
+
|
421 |
+
col1, col2, col3, col4 = st.columns(4)
|
422 |
+
with col1:
|
423 |
+
st.metric(label="Total PRs", value=sums["prs_count"])
|
424 |
+
with col2:
|
425 |
+
st.metric(label="PRs opened", value=sums["prs_open"])
|
426 |
+
with col3:
|
427 |
+
st.metric(label="PRs merged", value=sums["prs_merged"])
|
428 |
+
with col4:
|
429 |
+
st.metric(label="PRs closed", value=sums["prs_closed"])
|
430 |
+
|
431 |
+
col1, col2, col3 = st.columns(3)
|
432 |
+
with col1:
|
433 |
+
st.metric(label="Total discussions", value=sums["discussions_count"])
|
434 |
+
with col2:
|
435 |
+
st.metric(label="Discussions open", value=sums["discussions_open"])
|
436 |
+
with col3:
|
437 |
+
st.metric(label="Discussions closed", value=sums["discussions_closed"])
|
438 |
+
|
439 |
+
filtered_data = data[["repo_id", "prs_count", "prs_open", "prs_merged", "prs_closed", "discussions_count", "discussions_open", "discussions_closed"]].sort_values("prs_count", ascending=False).reset_index(drop=True)
|
440 |
+
st.dataframe(filtered_data)
|
441 |
+
|
442 |
+
#with tab5:
|
443 |
+
if tab == "Libraries":
|
444 |
+
st.header("Library info")
|
445 |
+
|
446 |
+
no_library_count = data["library"].isna().sum()
|
447 |
+
col1, col2, col3 = st.columns(3)
|
448 |
+
with col1:
|
449 |
+
st.metric(label="# models that have any library", value=total_samples-no_library_count)
|
450 |
+
with col2:
|
451 |
+
st.metric(label="No library Specified", value=no_library_count)
|
452 |
+
with col3:
|
453 |
+
st.metric(label="Total Unique library", value=len(data["library"].unique()))
|
454 |
+
|
455 |
+
|
456 |
+
st.subheader("High-level metrics")
|
457 |
+
filtered_data = data[data['library'].notna()]
|
458 |
+
|
459 |
+
col1, col2 = st.columns(2)
|
460 |
+
with col1:
|
461 |
+
lib = st.selectbox(
|
462 |
+
'What library do you want to see? ',
|
463 |
+
["all", *filtered_data["library"].unique()]
|
464 |
+
)
|
465 |
+
with col2:
|
466 |
+
pip = st.selectbox(
|
467 |
+
'What pipeline do you want to see? ',
|
468 |
+
["all", *filtered_data["pipeline"].unique()]
|
469 |
+
)
|
470 |
+
|
471 |
+
if pip != "all":
|
472 |
+
filtered_data = filtered_data[filtered_data["pipeline"] == pip]
|
473 |
+
if lib != "all":
|
474 |
+
filtered_data = filtered_data[filtered_data["library"] == lib]
|
475 |
+
|
476 |
+
|
477 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index()
|
478 |
+
grouped_data = filtered_data.groupby("library").sum()[["downloads_30d", "likes"]]
|
479 |
+
final_data = pd.merge(
|
480 |
+
d, grouped_data, how="outer", on="library"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
)
|
482 |
+
sums = grouped_data.sum()
|
483 |
+
|
484 |
+
col1, col2, col3 = st.columns(3)
|
485 |
+
with col1:
|
486 |
+
st.metric(label="Total models", value=filtered_data.shape[0])
|
487 |
+
with col2:
|
488 |
+
st.metric(label="Cumulative Downloads (30d)", value=sums["downloads_30d"])
|
489 |
+
with col3:
|
490 |
+
st.metric(label="Cumulative likes", value=sums["likes"])
|
491 |
+
|
492 |
+
st.subheader("Most common library types (Learn more in library tab)")
|
493 |
+
d = filtered_data["library"].value_counts().rename_axis("library").to_frame('counts').reset_index().head(15)
|
494 |
+
st.write(alt.Chart(d).mark_bar().encode(
|
495 |
+
x='counts',
|
496 |
+
y=alt.X('library', sort=None)
|
497 |
+
))
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
st.subheader("Aggregated Data")
|
502 |
+
st.dataframe(final_data)
|
503 |
+
|
504 |
+
st.subheader("Raw Data")
|
505 |
+
columns_of_interest = ["repo_id", "author", "files_per_repo", "library", "downloads_30d", "likes"]
|
506 |
+
filtered_data = filtered_data[columns_of_interest]
|
507 |
+
st.dataframe(filtered_data)
|
508 |
+
|
509 |
+
#with tab6:
|
510 |
+
if tab == "Model Cards":
|
511 |
+
st.header("Model cards")
|
512 |
+
|
513 |
+
columns_of_interest = ["has_model_index", "has_metadata", "has_text", "text_length"]
|
514 |
+
rows = data.shape[0]
|
515 |
+
|
516 |
+
cond = data["has_model_index"] | data["has_text"]
|
517 |
+
with_model_card = data[cond]
|
518 |
+
c_model_card = with_model_card.shape[0]
|
519 |
+
st.subheader("High-level metrics")
|
520 |
+
col1, col2, col3 = st.columns(3)
|
521 |
+
with col1:
|
522 |
+
st.metric(label="# models with model card file", value=c_model_card)
|
523 |
+
with col2:
|
524 |
+
st.metric(label="# models without model card file", value=rows-c_model_card)
|
525 |
+
|
526 |
+
with_index = data["has_model_index"].sum()
|
527 |
+
with col1:
|
528 |
+
st.metric(label="# models with model index", value=with_index)
|
529 |
+
with col2:
|
530 |
+
st.metric(label="# models without model index", value=rows-with_index)
|
531 |
+
|
532 |
+
with_text = data["has_text"]
|
533 |
+
with col1:
|
534 |
+
st.metric(label="# models with model card text", value=with_text.sum())
|
535 |
+
with col2:
|
536 |
+
st.metric(label="# models without model card text", value=rows-with_text.sum())
|
537 |
+
|
538 |
+
|
539 |
+
st.subheader("Length (chars) of model card content")
|
540 |
+
fig, ax = plt.subplots()
|
541 |
+
ax = data["length_bins"].value_counts().plot.bar()
|
542 |
+
st.metric(label="# average length of model card (chars)", value=data[with_text]["text_length"].mean())
|
543 |
+
st.pyplot(fig)
|
544 |
+
|
545 |
+
st.subheader("Tags (Read more in Pipeline tab)")
|
546 |
+
tags = data["tags"].explode()
|
547 |
+
tags = tags[tags.notna()].value_counts().rename_axis("tag").to_frame('counts').reset_index()
|
548 |
+
st.write(alt.Chart(tags.head(30)).mark_bar().encode(
|
549 |
+
x='counts',
|
550 |
+
y=alt.X('tag', sort=None)
|
551 |
+
))
|
552 |
+
|
553 |
+
#with tab7:
|
554 |
+
if tab == "Super Users":
|
555 |
+
st.header("Authors")
|
556 |
+
st.text("This info corresponds to the repos owned by the authors")
|
557 |
+
authors = data.groupby("author").sum().drop(["text_length", "Unnamed: 0"], axis=1).sort_values("downloads_30d", ascending=False)
|
558 |
+
d = data["author"].value_counts().rename_axis("author").to_frame('counts').reset_index()
|
559 |
+
final_data = pd.merge(
|
560 |
+
d, authors, how="outer", on="author"
|
561 |
)
|
562 |
+
st.dataframe(final_data)
|
563 |
|
564 |
+
#with tab2:
|
565 |
+
if tab == "Raw Data":
|
566 |
+
st.header("Raw Data")
|
567 |
+
d = data.astype(str)
|
568 |
+
st.dataframe(d)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
569 |
|
570 |
|
571 |
+
if __name__ == '__main__':
|
572 |
+
main()
|
573 |
|
574 |
|
575 |
|