Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,964 Bytes
30c8aac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
import sys
from http.server import HTTPServer, SimpleHTTPRequestHandler
from multiprocessing import Process
import subprocess
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import json
import fire
import torch
from urllib.parse import urlparse, unquote
model: RobertaForSequenceClassification = None
tokenizer: RobertaTokenizer = None
device: str = None
def log(*args):
print(f"[{os.environ.get('RANK', '')}]", *args, file=sys.stderr)
class RequestHandler(SimpleHTTPRequestHandler):
def do_GET(self):
query = unquote(urlparse(self.path).query)
if not query:
self.begin_content('text/html')
html = os.path.join(os.path.dirname(__file__), 'index.html')
self.wfile.write(open(html).read().encode())
return
self.begin_content('application/json;charset=UTF-8')
tokens = tokenizer.encode(query)
all_tokens = len(tokens)
tokens = tokens[:tokenizer.max_len - 2]
used_tokens = len(tokens)
tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0)
mask = torch.ones_like(tokens)
with torch.no_grad():
logits = model(tokens.to(device), attention_mask=mask.to(device))[0]
probs = logits.softmax(dim=-1)
fake, real = probs.detach().cpu().flatten().numpy().tolist()
self.wfile.write(json.dumps(dict(
all_tokens=all_tokens,
used_tokens=used_tokens,
real_probability=real,
fake_probability=fake
)).encode())
def begin_content(self, content_type):
self.send_response(200)
self.send_header('Content-Type', content_type)
self.send_header('Access-Control-Allow-Origin', '*')
self.end_headers()
def log_message(self, format, *args):
log(format % args)
def serve_forever(server, model, tokenizer, device):
log('Process has started; loading the model ...')
globals()['model'] = model.to(device)
globals()['tokenizer'] = tokenizer
globals()['device'] = device
log(f'Ready to serve at http://localhost:{server.server_address[1]}')
server.serve_forever()
def main(checkpoint, port=8080, device='cuda' if torch.cuda.is_available() else 'cpu'):
if checkpoint.startswith('gs://'):
print(f'Downloading {checkpoint}', file=sys.stderr)
subprocess.check_output(['gsutil', 'cp', checkpoint, '.'])
checkpoint = os.path.basename(checkpoint)
assert os.path.isfile(checkpoint)
print(f'Loading checkpoint from {checkpoint}')
data = torch.load(checkpoint, map_location='cpu')
model_name = 'roberta-large' if data['args']['large'] else 'roberta-base'
model = RobertaForSequenceClassification.from_pretrained(model_name)
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model.load_state_dict(data['model_state_dict'])
model.eval()
print(f'Starting HTTP server on port {port}', file=sys.stderr)
server = HTTPServer(('0.0.0.0', port), RequestHandler)
# avoid calling CUDA API before forking; doing so in a subprocess is fine.
num_workers = int(subprocess.check_output([sys.executable, '-c', 'import torch; print(torch.cuda.device_count())']))
if num_workers <= 1:
serve_forever(server, model, tokenizer, device)
else:
print(f'Launching {num_workers} worker processes...')
subprocesses = []
for i in range(num_workers):
os.environ['RANK'] = f'{i}'
os.environ['CUDA_VISIBLE_DEVICES'] = f'{i}'
process = Process(target=serve_forever, args=(server, model, tokenizer, device))
process.start()
subprocesses.append(process)
del os.environ['RANK']
del os.environ['CUDA_VISIBLE_DEVICES']
for process in subprocesses:
process.join()
if __name__ == '__main__':
fire.Fire(main)
|