Jong Wook Kim
detector model
6f40009
import json
import numpy as np
from typing import List
import torch
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import PreTrainedTokenizer
from .download import download
def load_texts(data_file, expected_size=None):
texts = []
for line in tqdm(open(data_file), total=expected_size, desc=f'Loading {data_file}'):
texts.append(json.loads(line)['text'])
return texts
class Corpus:
def __init__(self, name, data_dir='data', skip_train=False):
download(name, data_dir=data_dir)
self.name = name
self.train = load_texts(f'{data_dir}/{name}.train.jsonl', expected_size=250000) if not skip_train else None
self.test = load_texts(f'{data_dir}/{name}.test.jsonl', expected_size=5000)
self.valid = load_texts(f'{data_dir}/{name}.valid.jsonl', expected_size=5000)
class EncodedDataset(Dataset):
def __init__(self, real_texts: List[str], fake_texts: List[str], tokenizer: PreTrainedTokenizer,
max_sequence_length: int = None, min_sequence_length: int = None, epoch_size: int = None,
token_dropout: float = None, seed: int = None):
self.real_texts = real_texts
self.fake_texts = fake_texts
self.tokenizer = tokenizer
self.max_sequence_length = max_sequence_length
self.min_sequence_length = min_sequence_length
self.epoch_size = epoch_size
self.token_dropout = token_dropout
self.random = np.random.RandomState(seed)
def __len__(self):
return self.epoch_size or len(self.real_texts) + len(self.fake_texts)
def __getitem__(self, index):
if self.epoch_size is not None:
label = self.random.randint(2)
texts = [self.fake_texts, self.real_texts][label]
text = texts[self.random.randint(len(texts))]
else:
if index < len(self.real_texts):
text = self.real_texts[index]
label = 1
else:
text = self.fake_texts[index - len(self.real_texts)]
label = 0
tokens = self.tokenizer.encode(text)
if self.max_sequence_length is None:
tokens = tokens[:self.tokenizer.max_len - 2]
else:
output_length = min(len(tokens), self.max_sequence_length)
if self.min_sequence_length:
output_length = self.random.randint(min(self.min_sequence_length, len(tokens)), output_length + 1)
start_index = 0 if len(tokens) <= output_length else self.random.randint(0, len(tokens) - output_length + 1)
end_index = start_index + output_length
tokens = tokens[start_index:end_index]
if self.token_dropout:
dropout_mask = self.random.binomial(1, self.token_dropout, len(tokens)).astype(np.bool)
tokens = np.array(tokens)
tokens[dropout_mask] = self.tokenizer.unk_token_id
tokens = tokens.tolist()
if self.max_sequence_length is None or len(tokens) == self.max_sequence_length:
mask = torch.ones(len(tokens) + 2)
return torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]), mask, label
padding = [self.tokenizer.pad_token_id] * (self.max_sequence_length - len(tokens))
tokens = torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id] + padding)
mask = torch.ones(tokens.shape[0])
mask[-len(padding):] = 0
return tokens, mask, label