Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import numpy as np | |
from typing import List | |
import torch | |
from torch.utils.data import Dataset | |
from tqdm import tqdm | |
from transformers import PreTrainedTokenizer | |
from .download import download | |
def load_texts(data_file, expected_size=None): | |
texts = [] | |
for line in tqdm(open(data_file), total=expected_size, desc=f'Loading {data_file}'): | |
texts.append(json.loads(line)['text']) | |
return texts | |
class Corpus: | |
def __init__(self, name, data_dir='data', skip_train=False): | |
download(name, data_dir=data_dir) | |
self.name = name | |
self.train = load_texts(f'{data_dir}/{name}.train.jsonl', expected_size=250000) if not skip_train else None | |
self.test = load_texts(f'{data_dir}/{name}.test.jsonl', expected_size=5000) | |
self.valid = load_texts(f'{data_dir}/{name}.valid.jsonl', expected_size=5000) | |
class EncodedDataset(Dataset): | |
def __init__(self, real_texts: List[str], fake_texts: List[str], tokenizer: PreTrainedTokenizer, | |
max_sequence_length: int = None, min_sequence_length: int = None, epoch_size: int = None, | |
token_dropout: float = None, seed: int = None): | |
self.real_texts = real_texts | |
self.fake_texts = fake_texts | |
self.tokenizer = tokenizer | |
self.max_sequence_length = max_sequence_length | |
self.min_sequence_length = min_sequence_length | |
self.epoch_size = epoch_size | |
self.token_dropout = token_dropout | |
self.random = np.random.RandomState(seed) | |
def __len__(self): | |
return self.epoch_size or len(self.real_texts) + len(self.fake_texts) | |
def __getitem__(self, index): | |
if self.epoch_size is not None: | |
label = self.random.randint(2) | |
texts = [self.fake_texts, self.real_texts][label] | |
text = texts[self.random.randint(len(texts))] | |
else: | |
if index < len(self.real_texts): | |
text = self.real_texts[index] | |
label = 1 | |
else: | |
text = self.fake_texts[index - len(self.real_texts)] | |
label = 0 | |
tokens = self.tokenizer.encode(text) | |
if self.max_sequence_length is None: | |
tokens = tokens[:self.tokenizer.max_len - 2] | |
else: | |
output_length = min(len(tokens), self.max_sequence_length) | |
if self.min_sequence_length: | |
output_length = self.random.randint(min(self.min_sequence_length, len(tokens)), output_length + 1) | |
start_index = 0 if len(tokens) <= output_length else self.random.randint(0, len(tokens) - output_length + 1) | |
end_index = start_index + output_length | |
tokens = tokens[start_index:end_index] | |
if self.token_dropout: | |
dropout_mask = self.random.binomial(1, self.token_dropout, len(tokens)).astype(np.bool) | |
tokens = np.array(tokens) | |
tokens[dropout_mask] = self.tokenizer.unk_token_id | |
tokens = tokens.tolist() | |
if self.max_sequence_length is None or len(tokens) == self.max_sequence_length: | |
mask = torch.ones(len(tokens) + 2) | |
return torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]), mask, label | |
padding = [self.tokenizer.pad_token_id] * (self.max_sequence_length - len(tokens)) | |
tokens = torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id] + padding) | |
mask = torch.ones(tokens.shape[0]) | |
mask[-len(padding):] = 0 | |
return tokens, mask, label | |