Spaces:
Running
Running
File size: 6,957 Bytes
0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef ee3f06f 0eff2ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import copy as cp
import json
from collections import defaultdict
from urllib.request import urlopen
import gradio as gr
import numpy as np
import pandas as pd
from meta_data import MMBENCH_FIELDS, META_FIELDS, URL
def listinstr(lst, s):
assert isinstance(lst, list)
for item in lst:
if item in s:
return True
return False
def upper_key(k):
if k == 'ocr':
return 'OCR'
elif '_' in k:
k = k.split('_')
k = [x[0].upper() + x[1:] for x in k]
k = ' '.join(k)
return k
else:
return k
def load_results():
data = json.loads(urlopen(URL).read())
names = ['MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST_EN', 'MMBench_TEST_CN']
skip_keys = ['Method', 'Parameters', 'Language Model', 'Vision Model', 'Org', 'Time', 'Verified', 'OpenSource', 'key']
META_MAP = data['META_MAP']
for n in names:
print(n)
res_map = {x['Method'][0]: {upper_key(k): v for k, v in x.items() if k not in skip_keys} for x in data[n + '_Data']}
for r in res_map:
META_MAP[r][n] = res_map[r]
return META_MAP
def nth_large(val, vals):
return sum([1 for v in vals if v > val]) + 1
def model_size_flag(sz, FIELDS):
if pd.isna(sz) and 'Unknown' in FIELDS:
return True
if pd.isna(sz):
return False
sz = int(sz)
if '<4B' in FIELDS and sz < 4:
return True
if '4B-10B' in FIELDS and sz >= 4 and sz < 10:
return True
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
return True
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
return True
if '>40B' in FIELDS and sz >= 40:
return True
return False
def model_type_flag(line, FIELDS):
if 'Public' in FIELDS and line['OpenSource'] == 'Yes':
return True
if 'Private' in FIELDS and line['OpenSource'] == 'No':
return True
if 'Verified' in FIELDS and line['Verified'] == 'Yes':
return True
return False
def BUILD_L1_DF(results):
check_box = {}
check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model']
# revise there to set default dataset
check_box['required'] = ['MMBench_TEST_V11', 'MMBench_TEST', 'CCBench']
check_box['avg'] = ['MMBench_TEST_V11', 'MMBench_TEST']
check_box['all'] = check_box['avg'] + MMBENCH_FIELDS
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html'
type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
df = generate_table(results)
return df, check_box
def BUILD_L2_DF(results, dataset):
res = defaultdict(list)
sub = [v for v in results.values() if dataset in v]
assert len(sub)
fields = list(sub[0][dataset].keys())
non_overall_fields = [x for x in fields if 'Overall' not in x]
overall_fields = [x for x in fields if 'Overall' in x]
for m in results:
item = results[m]
if dataset not in item:
continue
for k in META_FIELDS:
if k == 'Param (B)':
param = item['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = item['Method']
res[k].append(f'<a href="{url}">{name}</a>')
else:
s = item[k].replace('\n', '<br>')
s = s.replace(' & ', '<br>')
res[k].append(s)
for d in overall_fields:
res[d].append(float(item[dataset][d]))
for d in non_overall_fields:
res[d].append(float(item[dataset][d]))
df = pd.DataFrame(res)
all_fields = overall_fields + non_overall_fields
# Use the first 5 non-overall fields as required fields
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
df = df.sort_values('Overall')
df = df.iloc[::-1]
check_box = {}
check_box['essential'] = ['Method', 'Org', 'Param (B)', 'Language Model', 'Vision Model']
check_box['required'] = required_fields
check_box['all'] = all_fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['Org'] = 'html'
type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
return df, check_box
def generate_table(results):
res = defaultdict(list)
for i, m in enumerate(results):
item = results[m]
for k in META_FIELDS:
if k == 'Param (B)':
param = item['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = item['Method']
res[k].append(f'<a href="{url}">{name}</a>')
else:
s = item[k].replace('\n', '<br>')
s = s.replace(' & ', '<br>')
res[k].append(s)
for d in ['MMBench_TEST_V11', 'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11', 'CCBench', 'MMBench_TEST', 'MMBench_TEST_EN', 'MMBench_TEST_CN']:
key_name = 'Overall' if d != 'OCRBench' else 'Final Score'
# Every Model should have MMBench_V11 results
if d == 'MMBench_TEST_V11':
if 'MMBench_TEST_EN_V11' in item and 'MMBench_TEST_CN_V11' in item:
val = item['MMBench_TEST_EN_V11'][key_name] + item['MMBench_TEST_CN_V11'][key_name]
val = val / 2
val = float(f'{val:.1f}')
res[d].append(val)
else:
res[d].append(None)
elif d == 'MMBench_TEST':
if 'MMBench_TEST_EN' in item and 'MMBench_TEST_CN' in item:
val = float(item['MMBench_TEST_EN'][key_name]) + float(item['MMBench_TEST_CN'][key_name])
val = val / 2
val = float(f'{val:.1f}')
res[d].append(val)
else:
res[d].append(None)
elif d in item:
val = float(item[d][key_name])
val = float(f'{val:.1f}')
res[d].append(val)
else:
res[d].append(None)
df = pd.DataFrame(res)
df_list = []
for k in [
'MMBench_TEST_V11', 'MMBench_TEST',
'MMBench_TEST_EN_V11', 'MMBench_TEST_CN_V11',
'MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench'
]:
if len(df) == 0:
break
valid, missing = df[~pd.isna(df[k])], df[pd.isna(df[k])]
valid = valid.sort_values(k)
valid = valid.iloc[::-1]
df_list.append(valid)
df = missing
df = pd.concat(df_list)
return df
|