Spaces:
Running
Running
import abc | |
import gradio as gr | |
from gen_table import * | |
from meta_data import * | |
with gr.Blocks() as demo: | |
struct = load_results() | |
timestamp = struct['time'] | |
EVAL_TIME = format_timestamp(timestamp) | |
results = struct['results'] | |
N_MODEL = len(results) | |
N_DATA = len(results['LLaVA-v1.5-7B']) - 1 | |
DATASETS = list(results['LLaVA-v1.5-7B']) | |
DATASETS.remove('META') | |
print(DATASETS) | |
gr.Markdown(LEADERBORAD_INTRODUCTION.format(N_MODEL, N_DATA, EVAL_TIME)) | |
structs = [abc.abstractproperty() for _ in range(N_DATA)] | |
with gr.Tabs(elem_classes='tab-buttons') as tabs: | |
with gr.TabItem('π OpenVLM Main Leaderboard', elem_id='main', id=0): | |
gr.Markdown(LEADERBOARD_MD['MAIN']) | |
_, check_box = BUILD_L1_DF(results, MAIN_FIELDS) | |
table = generate_table(results, DEFAULT_BENCH) | |
table['Rank'] = list(range(1, len(table) + 1)) | |
type_map = check_box['type_map'] | |
type_map['Rank'] = 'number' | |
checkbox_group = gr.CheckboxGroup( | |
choices=check_box['all'], | |
value=check_box['required'], | |
label='Evaluation Dimension', | |
interactive=True, | |
) | |
headers = ['Rank'] + check_box['essential'] + checkbox_group.value | |
with gr.Row(): | |
model_size = gr.CheckboxGroup( | |
choices=MODEL_SIZE, | |
value=MODEL_SIZE, | |
label='Model Size', | |
interactive=True | |
) | |
model_type = gr.CheckboxGroup( | |
choices=MODEL_TYPE, | |
value=MODEL_TYPE, | |
label='Model Type', | |
interactive=True | |
) | |
data_component = gr.components.DataFrame( | |
value=table[headers], | |
type='pandas', | |
datatype=[type_map[x] for x in headers], | |
interactive=False, | |
visible=True) | |
def filter_df(fields, model_size, model_type): | |
filter_list = ['Avg Score', 'Avg Rank', 'OpenSource', 'Verified'] | |
headers = ['Rank'] + check_box['essential'] + fields | |
new_fields = [field for field in fields if field not in filter_list] | |
df = generate_table(results, new_fields) | |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']] | |
df = df[df['flag']] | |
df.pop('flag') | |
if len(df): | |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] | |
df = df[df['flag']] | |
df.pop('flag') | |
df['Rank'] = list(range(1, len(df) + 1)) | |
comp = gr.components.DataFrame( | |
value=df[headers], | |
type='pandas', | |
datatype=[type_map[x] for x in headers], | |
interactive=False, | |
visible=True) | |
return comp | |
for cbox in [checkbox_group, model_size, model_type]: | |
cbox.change(fn=filter_df, inputs=[checkbox_group, model_size, model_type], outputs=data_component) | |
with gr.TabItem('π About', elem_id='about', id=1): | |
gr.Markdown(urlopen(VLMEVALKIT_README).read().decode()) | |
for i, dataset in enumerate(DATASETS): | |
with gr.TabItem(f'π {dataset} Leaderboard', elem_id=dataset, id=i + 2): | |
if dataset in LEADERBOARD_MD: | |
gr.Markdown(LEADERBOARD_MD[dataset]) | |
s = structs[i] | |
s.table, s.check_box = BUILD_L2_DF(results, dataset) | |
s.type_map = s.check_box['type_map'] | |
s.type_map['Rank'] = 'number' | |
s.checkbox_group = gr.CheckboxGroup( | |
choices=s.check_box['all'], | |
value=s.check_box['required'], | |
label=f'{dataset} CheckBoxes', | |
interactive=True, | |
) | |
s.headers = ['Rank'] + s.check_box['essential'] + s.checkbox_group.value | |
s.table['Rank'] = list(range(1, len(s.table) + 1)) | |
with gr.Row(): | |
s.model_size = gr.CheckboxGroup( | |
choices=MODEL_SIZE, | |
value=MODEL_SIZE, | |
label='Model Size', | |
interactive=True | |
) | |
s.model_type = gr.CheckboxGroup( | |
choices=MODEL_TYPE, | |
value=MODEL_TYPE, | |
label='Model Type', | |
interactive=True | |
) | |
s.data_component = gr.components.DataFrame( | |
value=s.table[s.headers], | |
type='pandas', | |
datatype=[s.type_map[x] for x in s.headers], | |
interactive=False, | |
visible=True) | |
s.dataset = gr.Textbox(value=dataset, label=dataset, visible=False) | |
def filter_df_l2(dataset_name, fields, model_size, model_type): | |
s = structs[DATASETS.index(dataset_name)] | |
headers = ['Rank'] + s.check_box['essential'] + fields | |
df = cp.deepcopy(s.table) | |
df['flag'] = [model_size_flag(x, model_size) for x in df['Param (B)']] | |
df = df[df['flag']] | |
df.pop('flag') | |
if len(df): | |
df['flag'] = [model_type_flag(df.iloc[i], model_type) for i in range(len(df))] | |
df = df[df['flag']] | |
df.pop('flag') | |
df['Rank'] = list(range(1, len(df) + 1)) | |
comp = gr.components.DataFrame( | |
value=df[headers], | |
type='pandas', | |
datatype=[s.type_map[x] for x in headers], | |
interactive=False, | |
visible=True) | |
return comp | |
for cbox in [s.checkbox_group, s.model_size, s.model_type]: | |
cbox.change( | |
fn=filter_df_l2, | |
inputs=[s.dataset, s.checkbox_group, s.model_size, s.model_type], | |
outputs=s.data_component) | |
with gr.Row(): | |
with gr.Accordion('Citation', open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id='citation-button') | |
if __name__ == '__main__': | |
demo.launch(server_name='0.0.0.0') | |