File size: 8,940 Bytes
a6e43e6 0bb476f a6e43e6 0bb476f a6e43e6 0bb476f a6e43e6 e06d81a a6e43e6 0bb476f a6e43e6 0bb476f e401827 0bb476f a6e43e6 0bb476f a6e43e6 e401827 0bb476f a6e43e6 0bb476f a6e43e6 a0e2ce8 40533e0 9f63bca a6e43e6 64d336c a6e43e6 c0679db a6e43e6 2942a81 a6e43e6 612773e a6e43e6 612773e a6e43e6 2942a81 a6e43e6 443e281 0bb476f e06d81a 5c63389 e06d81a 443e281 2942a81 443e281 e06d81a 443e281 e06d81a d496ac6 e06d81a e401827 0bb476f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import copy as cp
import json
from collections import defaultdict
from urllib.request import urlopen
import gradio as gr
import numpy as np
import pandas as pd
from pathlib import Path
from typing import Union, List, Dict
from loguru import logger
from judgerbench.meta_data import (
DATADIR,
LEADERBOARD_FILE_MAPPING,
DEFAULT_BENCH,
FIELD_MAPPING,
STYLE_CLASS_MAPPING,
META_FIELDS,
URL
)
def listinstr(lst, s):
assert isinstance(lst, list)
for item in lst:
if item in s:
return True
return False
def load_results_from_url():
data = json.loads(urlopen(URL).read())
return data
def nth_large(val, vals):
return sum([1 for v in vals if v > val]) + 1
def format_timestamp(timestamp):
date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
return date + ' ' + time
def model_size_flag(sz, FIELDS):
if pd.isna(sz) and 'Unknown' in FIELDS:
return True
if pd.isna(sz):
return False
if '<4B' in FIELDS and sz < 4:
return True
if '4B-10B' in FIELDS and sz >= 4 and sz < 10:
return True
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
return True
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
return True
if '>40B' in FIELDS and sz >= 40:
return True
return False
def model_type_flag(line, FIELDS):
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
return True
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
return True
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
return True
return False
def build_l1_df(fields):
check_box = {}
check_box['essential'] = [
# 'Method',
# 'Param (B)',
'Model',
]
# revise there to set default dataset
check_box['default'] = DEFAULT_BENCH
check_box['avg'] = ['Average']
check_box['accuracy'] = ['Accuracy_CN', 'Accuracy_EN', 'Accuracy',]
check_box['all'] = fields
type_map = defaultdict(lambda: 'number')
# type_map['Method'] = 'html'
type_map['Model'] = 'str'
# type_map['Language Model'] = 'str'
# type_map['Vision Model'] = 'str'
# type_map['OpenSource'] = 'str'
# type_map['Verified'] = 'str'
check_box['type_map'] = type_map
df = generate_table(fields)
return df, check_box
def build_l2_df(results, dataset):
res = defaultdict(list)
sub = [v for v in results.values() if dataset in v]
assert len(sub)
fields = list(sub[0][dataset].keys())
non_overall_fields = [x for x in fields if 'Overall' not in x]
overall_fields = [x for x in fields if 'Overall' in x]
if dataset == 'MME':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
overall_fields = overall_fields + ['Perception', 'Cognition']
if dataset == 'OCRBench':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)]
overall_fields = ['Final Score']
for m in results:
item = results[m]
if dataset not in item:
continue
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'<a href="{url}">{name}</a>')
else:
res[k].append(meta[k])
fields = [x for x in fields]
for d in non_overall_fields:
res[d].append(item[dataset][d])
for d in overall_fields:
res[d].append(item[dataset][d])
df = pd.DataFrame(res)
all_fields = overall_fields + non_overall_fields
# Use the first 5 non-overall fields as required fields
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
if dataset == 'OCRBench':
df = df.sort_values('Final Score')
elif dataset == 'COCO_VAL':
df = df.sort_values('CIDEr')
else:
df = df.sort_values('Overall')
df = df.iloc[::-1]
check_box = {}
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
check_box['required'] = required_fields
check_box['all'] = all_fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
return df, check_box
def generate_table1(results, fields):
def get_mmbench_v11(item):
assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item
val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2
val = float(f'{val:.1f}')
return val
res = defaultdict(list)
for i, m in enumerate(results):
item = results[m]
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'<a href="{url}">{name}</a>')
res['name'].append(name)
else:
res[k].append(meta[k])
scores, ranks = [], []
for d in fields:
key_name = 'Overall' if d != 'OCRBench' else 'Final Score'
# Every Model should have MMBench_V11 results
if d == 'MMBench_V11':
val = get_mmbench_v11(item)
res[d].append(val)
scores.append(val)
ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()]))
elif d in item:
res[d].append(item[d][key_name])
if d == 'MME':
scores.append(item[d][key_name] / 28)
elif d == 'OCRBench':
scores.append(item[d][key_name] / 10)
else:
scores.append(item[d][key_name])
ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x]))
else:
res[d].append(None)
scores.append(None)
ranks.append(None)
res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None)
res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None)
df = pd.DataFrame(res)
valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])]
valid = valid.sort_values('Avg Score')
valid = valid.iloc[::-1]
if len(fields):
missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0])
missing = missing.iloc[::-1]
df = pd.concat([valid, missing])
return df
def generate_table(
fields: List[str] = None,
filename: str = None,
path: Union[str, Path] = DATADIR / "overall.csv",
):
if filename in LEADERBOARD_FILE_MAPPING:
path = DATADIR / LEADERBOARD_FILE_MAPPING[filename]
if filename is None and path is None:
raise ValueError("filename and path cannot both be None.")
REQUIRED_FILEDS = META_FIELDS + [
# 'Average'
]
df = pd.read_csv(path)
# df_reshaped = (
# df
# .drop(columns=["dataset", "mode", "version"])
# .melt(
# id_vars=["metric"],
# var_name="model",
# value_name="value"
# )
# .pivot(index=["model"], columns=["metric"], values='value')
# )
# df_reshaped.columns.name = None
# df_reshaped.reset_index(inplace=True)
# df_reshaped.rename(columns=FIELD_MAPPING, inplace=True)
# if fields is not None:
# for field in fields:
# if field not in df_reshaped.columns:
# raise ValueError(f"{field} is not a valid field in leaderboard table.")
# new_fields = [field for field in FIELD_MAPPING.values() if field in REQUIRED_FILEDS + fields]
# logger.info(f"{new_fields=}")
# df_reshaped = df_reshaped.loc[:,new_fields].copy()
# valid, missing = df_reshaped[~pd.isna(df_reshaped['Average'])], df_reshaped[pd.isna(df_reshaped['Average'])]
# valid = valid.sort_values('Average', ascending=False)
# if len(fields):
# missing = missing.sort_values(
# 'Accuracy' if 'Accuracy' in fields else fields[0],
# ascending=False,
# )
# df_sorted = pd.concat([valid, missing])
df_sorted = df
return df_sorted
|