import copy as cp import json from collections import defaultdict from urllib.request import urlopen import gradio as gr import numpy as np import pandas as pd from meta_data import DEFAULT_BENCH, META_FIELDS, URL def listinstr(lst, s): assert isinstance(lst, list) for item in lst: if item in s: return True return False def load_results(): data = json.loads(urlopen(URL).read()) return data def nth_large(val, vals): return sum([1 for v in vals if v > val]) + 1 def format_timestamp(timestamp): date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12] return date + ' ' + time def model_size_flag(sz, FIELDS): if pd.isna(sz) and 'Unknown' in FIELDS: return True if pd.isna(sz): return False if '<4B' in FIELDS and sz < 4: return True if '4B-10B' in FIELDS and sz >= 4 and sz < 10: return True if '10B-20B' in FIELDS and sz >= 10 and sz < 20: return True if '20B-40B' in FIELDS and sz >= 20 and sz < 40: return True if '>40B' in FIELDS and sz >= 40: return True return False def model_type_flag(line, FIELDS): if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': return True if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes': return True if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No': return True return False def BUILD_L1_DF(results, fields): check_box = {} check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model'] # revise there to set default dataset check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH check_box['avg'] = ['Avg Score', 'Avg Rank'] check_box['all'] = check_box['avg'] + fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map df = generate_table(results, fields) return df, check_box def BUILD_L2_DF(results, dataset): res = defaultdict(list) fields = list(list(results.values())[0][dataset].keys()) non_overall_fields = [x for x in fields if 'Overall' not in x] overall_fields = [x for x in fields if 'Overall' in x] if dataset == 'MME': non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)] overall_fields = overall_fields + ['Perception', 'Cognition'] if dataset == 'OCRBench': non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)] overall_fields = ['Final Score'] for m in results: item = results[m] if dataset not in item: continue meta = item['META'] for k in META_FIELDS: if k == 'Param (B)': param = meta['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = meta['Method'] res[k].append(f'{name}') else: res[k].append(meta[k]) fields = [x for x in fields] for d in non_overall_fields: res[d].append(item[dataset][d]) for d in overall_fields: res[d].append(item[dataset][d]) df = pd.DataFrame(res) all_fields = overall_fields + non_overall_fields # Use the first 5 non-overall fields as required fields required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5] if dataset == 'OCRBench': df = df.sort_values('Final Score') elif dataset == 'COCO_VAL': df = df.sort_values('CIDEr') else: df = df.sort_values('Overall') df = df.iloc[::-1] check_box = {} check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model'] check_box['required'] = required_fields check_box['all'] = all_fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map return df, check_box def generate_table(results, fields): def get_mmbench_v11(item): assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2 val = float(f'{val:.1f}') return val res = defaultdict(list) for i, m in enumerate(results): item = results[m] meta = item['META'] for k in META_FIELDS: if k == 'Param (B)': param = meta['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = meta['Method'] res[k].append(f'{name}') res['name'].append(name) else: res[k].append(meta[k]) scores, ranks = [], [] for d in fields: key_name = 'Overall' if d != 'OCRBench' else 'Final Score' # Every Model should have MMBench_V11 results if d == 'MMBench_V11': val = get_mmbench_v11(item) res[d].append(val) scores.append(val) ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()])) elif d in item: res[d].append(item[d][key_name]) if d == 'MME': scores.append(item[d][key_name] / 28) elif d == 'OCRBench': scores.append(item[d][key_name] / 10) else: scores.append(item[d][key_name]) ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x])) else: res[d].append(None) scores.append(None) ranks.append(None) res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None) res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None) df = pd.DataFrame(res) valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])] valid = valid.sort_values('Avg Score') valid = valid.iloc[::-1] if len(fields): missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0]) missing = missing.iloc[::-1] df = pd.concat([valid, missing]) return df