import copy as cp
import json
from collections import defaultdict
from urllib.request import urlopen
import gradio as gr
import numpy as np
import pandas as pd
from meta_data import DEFAULT_BENCH, META_FIELDS, URL
def listinstr(lst, s):
assert isinstance(lst, list)
for item in lst:
if item in s:
return True
return False
def load_results():
data = json.loads(urlopen(URL).read())
return data
def nth_large(val, vals):
return sum([1 for v in vals if v > val]) + 1
def format_timestamp(timestamp):
date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
return date + ' ' + time
def model_size_flag(sz, FIELDS):
if pd.isna(sz) and 'Unknown' in FIELDS:
return True
if pd.isna(sz):
return False
if '<4B' in FIELDS and sz < 4:
return True
if '4B-10B' in FIELDS and sz >= 4 and sz < 10:
return True
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
return True
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
return True
if '>40B' in FIELDS and sz >= 40:
return True
return False
def model_type_flag(line, FIELDS):
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
return True
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
return True
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
return True
return False
def BUILD_L1_DF(results, fields):
check_box = {}
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
# revise there to set default dataset
check_box['required'] = ['Avg Score', 'Avg Rank'] + DEFAULT_BENCH
check_box['avg'] = ['Avg Score', 'Avg Rank']
check_box['all'] = check_box['avg'] + fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
df = generate_table(results, fields)
return df, check_box
def BUILD_L2_DF(results, dataset):
res = defaultdict(list)
fields = list(list(results.values())[0][dataset].keys())
non_overall_fields = [x for x in fields if 'Overall' not in x]
overall_fields = [x for x in fields if 'Overall' in x]
if dataset == 'MME':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
overall_fields = overall_fields + ['Perception', 'Cognition']
if dataset == 'OCRBench':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)]
overall_fields = ['Final Score']
for m in results:
item = results[m]
if dataset not in item:
continue
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'{name}')
else:
res[k].append(meta[k])
fields = [x for x in fields]
for d in non_overall_fields:
res[d].append(item[dataset][d])
for d in overall_fields:
res[d].append(item[dataset][d])
df = pd.DataFrame(res)
all_fields = overall_fields + non_overall_fields
# Use the first 5 non-overall fields as required fields
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
if dataset == 'OCRBench':
df = df.sort_values('Final Score')
elif dataset == 'COCO_VAL':
df = df.sort_values('CIDEr')
else:
df = df.sort_values('Overall')
df = df.iloc[::-1]
check_box = {}
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
check_box['required'] = required_fields
check_box['all'] = all_fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
return df, check_box
def generate_table(results, fields):
def get_mmbench_v11(item):
assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item
val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2
val = float(f'{val:.1f}')
return val
res = defaultdict(list)
for i, m in enumerate(results):
item = results[m]
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'{name}')
res['name'].append(name)
else:
res[k].append(meta[k])
scores, ranks = [], []
for d in fields:
key_name = 'Overall' if d != 'OCRBench' else 'Final Score'
# Every Model should have MMBench_V11 results
if d == 'MMBench_V11':
val = get_mmbench_v11(item)
res[d].append(val)
scores.append(val)
ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()]))
elif d in item:
res[d].append(item[d][key_name])
if d == 'MME':
scores.append(item[d][key_name] / 28)
elif d == 'OCRBench':
scores.append(item[d][key_name] / 10)
else:
scores.append(item[d][key_name])
ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x]))
else:
res[d].append(None)
scores.append(None)
ranks.append(None)
res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None)
res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None)
df = pd.DataFrame(res)
valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])]
valid = valid.sort_values('Avg Score')
valid = valid.iloc[::-1]
if len(fields):
missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0])
missing = missing.iloc[::-1]
df = pd.concat([valid, missing])
return df