import copy as cp
import json
from collections import defaultdict
from urllib.request import urlopen
import gradio as gr
import numpy as np
import pandas as pd
from pathlib import Path
from typing import Union, List, Dict
from loguru import logger
from judgerbench.meta_data import (
DATADIR,
LEADERBOARD_FILE_MAPPING,
DEFAULT_BENCH,
FIELD_MAPPING,
STYLE_CLASS_MAPPING,
META_FIELDS,
URL
)
def listinstr(lst, s):
assert isinstance(lst, list)
for item in lst:
if item in s:
return True
return False
def load_results_from_url():
data = json.loads(urlopen(URL).read())
return data
def nth_large(val, vals):
return sum([1 for v in vals if v > val]) + 1
def format_timestamp(timestamp):
date = timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6]
time = timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12]
return date + ' ' + time
def model_size_flag(sz, FIELDS):
if pd.isna(sz) and 'Unknown' in FIELDS:
return True
if pd.isna(sz):
return False
if '<4B' in FIELDS and sz < 4:
return True
if '4B-10B' in FIELDS and sz >= 4 and sz < 10:
return True
if '10B-20B' in FIELDS and sz >= 10 and sz < 20:
return True
if '20B-40B' in FIELDS and sz >= 20 and sz < 40:
return True
if '>40B' in FIELDS and sz >= 40:
return True
return False
def model_type_flag(line, FIELDS):
if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes':
return True
if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes':
return True
if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No':
return True
return False
def build_l1_df(fields):
check_box = {}
check_box['essential'] = [
# 'Method',
# 'Param (B)',
'Model',
]
# revise there to set default dataset
check_box['default'] = DEFAULT_BENCH
check_box['avg'] = ['Average']
check_box['accuracy'] = ['Accuracy_CN', 'Accuracy_EN', 'Accuracy',]
check_box['all'] = fields
type_map = defaultdict(lambda: 'number')
# type_map['Method'] = 'html'
type_map['Model'] = 'str'
# type_map['Language Model'] = 'str'
# type_map['Vision Model'] = 'str'
# type_map['OpenSource'] = 'str'
# type_map['Verified'] = 'str'
check_box['type_map'] = type_map
df = generate_table(fields)
return df, check_box
def build_l2_df(results, dataset):
res = defaultdict(list)
sub = [v for v in results.values() if dataset in v]
assert len(sub)
fields = list(sub[0][dataset].keys())
non_overall_fields = [x for x in fields if 'Overall' not in x]
overall_fields = [x for x in fields if 'Overall' in x]
if dataset == 'MME':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)]
overall_fields = overall_fields + ['Perception', 'Cognition']
if dataset == 'OCRBench':
non_overall_fields = [x for x in non_overall_fields if not listinstr(['Final Score'], x)]
overall_fields = ['Final Score']
for m in results:
item = results[m]
if dataset not in item:
continue
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'{name}')
else:
res[k].append(meta[k])
fields = [x for x in fields]
for d in non_overall_fields:
res[d].append(item[dataset][d])
for d in overall_fields:
res[d].append(item[dataset][d])
df = pd.DataFrame(res)
all_fields = overall_fields + non_overall_fields
# Use the first 5 non-overall fields as required fields
required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5]
if dataset == 'OCRBench':
df = df.sort_values('Final Score')
elif dataset == 'COCO_VAL':
df = df.sort_values('CIDEr')
else:
df = df.sort_values('Overall')
df = df.iloc[::-1]
check_box = {}
check_box['essential'] = ['Method', 'Param (B)', 'Language Model', 'Vision Model']
check_box['required'] = required_fields
check_box['all'] = all_fields
type_map = defaultdict(lambda: 'number')
type_map['Method'] = 'html'
type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str'
check_box['type_map'] = type_map
return df, check_box
def generate_table1(results, fields):
def get_mmbench_v11(item):
assert 'MMBench_TEST_CN_V11' in item and 'MMBench_TEST_EN_V11' in item
val = (item['MMBench_TEST_CN_V11']['Overall'] + item['MMBench_TEST_EN_V11']['Overall']) / 2
val = float(f'{val:.1f}')
return val
res = defaultdict(list)
for i, m in enumerate(results):
item = results[m]
meta = item['META']
for k in META_FIELDS:
if k == 'Param (B)':
param = meta['Parameters']
res[k].append(float(param.replace('B', '')) if param != '' else None)
elif k == 'Method':
name, url = meta['Method']
res[k].append(f'{name}')
res['name'].append(name)
else:
res[k].append(meta[k])
scores, ranks = [], []
for d in fields:
key_name = 'Overall' if d != 'OCRBench' else 'Final Score'
# Every Model should have MMBench_V11 results
if d == 'MMBench_V11':
val = get_mmbench_v11(item)
res[d].append(val)
scores.append(val)
ranks.append(nth_large(val, [get_mmbench_v11(x) for x in results.values()]))
elif d in item:
res[d].append(item[d][key_name])
if d == 'MME':
scores.append(item[d][key_name] / 28)
elif d == 'OCRBench':
scores.append(item[d][key_name] / 10)
else:
scores.append(item[d][key_name])
ranks.append(nth_large(item[d][key_name], [x[d][key_name] for x in results.values() if d in x]))
else:
res[d].append(None)
scores.append(None)
ranks.append(None)
res['Avg Score'].append(round(np.mean(scores), 1) if None not in scores else None)
res['Avg Rank'].append(round(np.mean(ranks), 2) if None not in ranks else None)
df = pd.DataFrame(res)
valid, missing = df[~pd.isna(df['Avg Score'])], df[pd.isna(df['Avg Score'])]
valid = valid.sort_values('Avg Score')
valid = valid.iloc[::-1]
if len(fields):
missing = missing.sort_values('MMBench_V11' if 'MMBench_V11' in fields else fields[0])
missing = missing.iloc[::-1]
df = pd.concat([valid, missing])
return df
def generate_table(
fields: List[str] = None,
filename: str = None,
path: Union[str, Path] = DATADIR / "overall.csv",
):
if filename in LEADERBOARD_FILE_MAPPING:
path = DATADIR / LEADERBOARD_FILE_MAPPING[filename]
if filename is None and path is None:
raise ValueError("filename and path cannot both be None.")
REQUIRED_FILEDS = META_FIELDS + [
# 'Average'
]
df = pd.read_csv(path)
# df_reshaped = (
# df
# .drop(columns=["dataset", "mode", "version"])
# .melt(
# id_vars=["metric"],
# var_name="model",
# value_name="value"
# )
# .pivot(index=["model"], columns=["metric"], values='value')
# )
# df_reshaped.columns.name = None
# df_reshaped.reset_index(inplace=True)
# df_reshaped.rename(columns=FIELD_MAPPING, inplace=True)
# if fields is not None:
# for field in fields:
# if field not in df_reshaped.columns:
# raise ValueError(f"{field} is not a valid field in leaderboard table.")
# new_fields = [field for field in FIELD_MAPPING.values() if field in REQUIRED_FILEDS + fields]
# logger.info(f"{new_fields=}")
# df_reshaped = df_reshaped.loc[:,new_fields].copy()
# valid, missing = df_reshaped[~pd.isna(df_reshaped['Average'])], df_reshaped[pd.isna(df_reshaped['Average'])]
# valid = valid.sort_values('Average', ascending=False)
# if len(fields):
# missing = missing.sort_values(
# 'Accuracy' if 'Accuracy' in fields else fields[0],
# ascending=False,
# )
# df_sorted = pd.concat([valid, missing])
df_sorted = df
return df_sorted