DocLayout-YOLO / visualization.py
juliozhao's picture
Upload 13 files
778c8b4 verified
raw
history blame
3.12 kB
import numpy as np
import cv2
from PIL import Image
def colormap(N=256, normalized=False):
"""
Generate the color map.
Args:
N (int): Number of labels (default is 256).
normalized (bool): If True, return colors normalized to [0, 1]. Otherwise, return [0, 255].
Returns:
np.ndarray: Color map array of shape (N, 3).
"""
def bitget(byteval, idx):
"""
Get the bit value at the specified index.
Args:
byteval (int): The byte value.
idx (int): The index of the bit.
Returns:
int: The bit value (0 or 1).
"""
return ((byteval & (1 << idx)) != 0)
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r = g = b = 0
c = i
for j in range(8):
r = r | (bitget(c, 0) << (7 - j))
g = g | (bitget(c, 1) << (7 - j))
b = b | (bitget(c, 2) << (7 - j))
c = c >> 3
cmap[i] = np.array([r, g, b])
if normalized:
cmap = cmap.astype(np.float32) / 255.0
return cmap
def visualize_bbox(image_path, bboxes, classes, scores, id_to_names, alpha=0.3):
"""
Visualize layout detection results on an image.
Args:
image_path (str): Path to the input image.
bboxes (list): List of bounding boxes, each represented as [x_min, y_min, x_max, y_max].
classes (list): List of class IDs corresponding to the bounding boxes.
id_to_names (dict): Dictionary mapping class IDs to class names.
alpha (float): Transparency factor for the filled color (default is 0.3).
Returns:
np.ndarray: Image with visualized layout detection results.
"""
# Check if image_path is a PIL.Image.Image object
if isinstance(image_path, Image.Image) or isinstance(image_path, np.ndarray):
image = np.array(image_path)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR for OpenCV
else:
image = cv2.imread(image_path)
overlay = image.copy()
cmap = colormap(N=len(id_to_names), normalized=False)
# Iterate over each bounding box
for i, bbox in enumerate(bboxes):
x_min, y_min, x_max, y_max = map(int, bbox)
class_id = int(classes[i])
class_name = id_to_names[class_id]
text = class_name + f":{scores[i]:.3f}"
color = tuple(int(c) for c in cmap[class_id])
cv2.rectangle(overlay, (x_min, y_min), (x_max, y_max), color, -1)
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 2)
# Add the class name with a background rectangle
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.9, 2)
cv2.rectangle(image, (x_min, y_min - text_height - baseline), (x_min + text_width, y_min), color, -1)
cv2.putText(image, text, (x_min, y_min - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2)
# Blend the overlay with the original image
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image)
return image