Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import cv2 | |
from PIL import Image | |
def colormap(N=256, normalized=False): | |
""" | |
Generate the color map. | |
Args: | |
N (int): Number of labels (default is 256). | |
normalized (bool): If True, return colors normalized to [0, 1]. Otherwise, return [0, 255]. | |
Returns: | |
np.ndarray: Color map array of shape (N, 3). | |
""" | |
def bitget(byteval, idx): | |
""" | |
Get the bit value at the specified index. | |
Args: | |
byteval (int): The byte value. | |
idx (int): The index of the bit. | |
Returns: | |
int: The bit value (0 or 1). | |
""" | |
return ((byteval & (1 << idx)) != 0) | |
cmap = np.zeros((N, 3), dtype=np.uint8) | |
for i in range(N): | |
r = g = b = 0 | |
c = i | |
for j in range(8): | |
r = r | (bitget(c, 0) << (7 - j)) | |
g = g | (bitget(c, 1) << (7 - j)) | |
b = b | (bitget(c, 2) << (7 - j)) | |
c = c >> 3 | |
cmap[i] = np.array([r, g, b]) | |
if normalized: | |
cmap = cmap.astype(np.float32) / 255.0 | |
return cmap | |
def visualize_bbox(image_path, bboxes, classes, scores, id_to_names, alpha=0.3): | |
""" | |
Visualize layout detection results on an image. | |
Args: | |
image_path (str): Path to the input image. | |
bboxes (list): List of bounding boxes, each represented as [x_min, y_min, x_max, y_max]. | |
classes (list): List of class IDs corresponding to the bounding boxes. | |
id_to_names (dict): Dictionary mapping class IDs to class names. | |
alpha (float): Transparency factor for the filled color (default is 0.3). | |
Returns: | |
np.ndarray: Image with visualized layout detection results. | |
""" | |
# Check if image_path is a PIL.Image.Image object | |
if isinstance(image_path, Image.Image) or isinstance(image_path, np.ndarray): | |
image = np.array(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert RGB to BGR for OpenCV | |
else: | |
image = cv2.imread(image_path) | |
overlay = image.copy() | |
cmap = colormap(N=len(id_to_names), normalized=False) | |
# Iterate over each bounding box | |
for i, bbox in enumerate(bboxes): | |
x_min, y_min, x_max, y_max = map(int, bbox) | |
class_id = int(classes[i]) | |
class_name = id_to_names[class_id] | |
text = class_name + f":{scores[i]:.3f}" | |
color = tuple(int(c) for c in cmap[class_id]) | |
cv2.rectangle(overlay, (x_min, y_min), (x_max, y_max), color, -1) | |
cv2.rectangle(image, (x_min, y_min), (x_max, y_max), color, 2) | |
# Add the class name with a background rectangle | |
(text_width, text_height), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.9, 2) | |
cv2.rectangle(image, (x_min, y_min - text_height - baseline), (x_min + text_width, y_min), color, -1) | |
cv2.putText(image, text, (x_min, y_min - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (255, 255, 255), 2) | |
# Blend the overlay with the original image | |
cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0, image) | |
return image |