File size: 2,937 Bytes
43af02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c792806
43af02a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663fcb
43af02a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from huggingface_hub import InferenceClient
import gradio as gr
from deep_translator import GoogleTranslator

# Initialize the InferenceClient and the translators
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
translator_to_en = GoogleTranslator(source='arabic', target='english')
translator_to_ar = GoogleTranslator(source='english', target='arabic')

def format_prompt(message, history):
    prompt = """<s> I want you to act as an intelligent tool developed by Mujahed, Mujahed Yemeni Communications Engineer. works in Wi-Fi network service and provides VPN service." """
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history, temperature=0.1, max_new_tokens=128, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    # Translate the Arabic prompt to English
    translated_prompt = translator_to_en.translate(prompt)
    formatted_prompt = format_prompt(translated_prompt, history)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield translator_to_ar.translate(output)  # Translate the response back to Arabic
    return output

additional_inputs=[
    gr.Slider(
        label="Temperature",
        value=0.7,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.95,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=False, show_share_button=True, show_copy_button=True, likeable=False, layout="panel"),
    additional_inputs=additional_inputs,
    title="لازال تحت الاختبار اخوكم مجاهد الجعدي.. لا تتردد باي سؤال"
).launch(show_api=False)