|
import os |
|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image |
|
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images |
|
from diffusers.utils import load_image |
|
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download |
|
import copy |
|
import random |
|
import time |
|
import requests |
|
import pandas as pd |
|
from transformers import pipeline |
|
|
|
import logging |
|
import warnings |
|
import numpy as np |
|
from diffusers import FluxControlNetModel |
|
from diffusers.pipelines import FluxControlNetPipeline |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download |
|
from gradio_imageslider import ImageSlider |
|
|
|
|
|
|
|
|
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
|
|
df = pd.read_csv('prompts.csv', header=None) |
|
prompt_values = df.values.flatten() |
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
|
|
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) |
|
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device) |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device) |
|
pipe_i2i = AutoPipelineForImage2Image.from_pretrained( |
|
base_model, |
|
vae=good_vae, |
|
transformer=pipe.transformer, |
|
text_encoder=pipe.text_encoder, |
|
tokenizer=pipe.tokenizer, |
|
text_encoder_2=pipe.text_encoder_2, |
|
tokenizer_2=pipe.tokenizer_2, |
|
torch_dtype=dtype |
|
) |
|
|
|
MAX_SEED = 2**32 - 1 |
|
|
|
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
def download_file(url, directory=None): |
|
if directory is None: |
|
directory = os.getcwd() |
|
|
|
|
|
filename = url.split('/')[-1] |
|
|
|
|
|
filepath = os.path.join(directory, filename) |
|
|
|
|
|
response = requests.get(url) |
|
response.raise_for_status() |
|
|
|
|
|
with open(filepath, 'wb') as file: |
|
file.write(response.content) |
|
|
|
return filepath |
|
|
|
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height): |
|
selected_index = evt.index |
|
selected_indices = selected_indices or [] |
|
if selected_index in selected_indices: |
|
selected_indices.remove(selected_index) |
|
else: |
|
if len(selected_indices) < 2: |
|
selected_indices.append(selected_index) |
|
else: |
|
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.") |
|
return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update() |
|
|
|
selected_info_1 = "Select a LoRA 1" |
|
selected_info_2 = "Select a LoRA 2" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = loras_state[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
lora_image_1 = lora1['image'] |
|
if len(selected_indices) >= 2: |
|
lora2 = loras_state[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
lora_image_2 = lora2['image'] |
|
|
|
if selected_indices: |
|
last_selected_lora = loras_state[selected_indices[-1]] |
|
new_placeholder = f"Type a prompt for {last_selected_lora['title']}" |
|
else: |
|
new_placeholder = "Type a prompt after selecting a LoRA" |
|
|
|
return gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2 |
|
|
|
def remove_lora_1(selected_indices, loras_state): |
|
if len(selected_indices) >= 1: |
|
selected_indices.pop(0) |
|
selected_info_1 = "Select a LoRA 1" |
|
selected_info_2 = "Select a LoRA 2" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = loras_state[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" |
|
lora_image_1 = lora1['image'] |
|
if len(selected_indices) >= 2: |
|
lora2 = loras_state[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" |
|
lora_image_2 = lora2['image'] |
|
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2 |
|
|
|
def remove_lora_2(selected_indices, loras_state): |
|
if len(selected_indices) >= 2: |
|
selected_indices.pop(1) |
|
selected_info_1 = "Select LoRA 1" |
|
selected_info_2 = "Select LoRA 2" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = loras_state[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" |
|
lora_image_1 = lora1['image'] |
|
if len(selected_indices) >= 2: |
|
lora2 = loras_state[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" |
|
lora_image_2 = lora2['image'] |
|
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2 |
|
|
|
def randomize_loras(selected_indices, loras_state): |
|
if len(loras_state) < 2: |
|
raise gr.Error("Not enough LoRAs to randomize.") |
|
selected_indices = random.sample(range(len(loras_state)), 2) |
|
lora1 = loras_state[selected_indices[0]] |
|
lora2 = loras_state[selected_indices[1]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨" |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_image_1 = lora1['image'] |
|
lora_image_2 = lora2['image'] |
|
random_prompt = random.choice(prompt_values) |
|
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt |
|
|
|
def add_custom_lora(custom_lora, selected_indices, current_loras): |
|
if custom_lora: |
|
try: |
|
title, repo, path, trigger_word, image = check_custom_model(custom_lora) |
|
print(f"Loaded custom LoRA: {repo}") |
|
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None) |
|
if existing_item_index is None: |
|
if repo.endswith(".safetensors") and repo.startswith("http"): |
|
repo = download_file(repo) |
|
new_item = { |
|
"image": image if image else "/home/user/app/custom.png", |
|
"title": title, |
|
"repo": repo, |
|
"weights": path, |
|
"trigger_word": trigger_word |
|
} |
|
print(f"New LoRA: {new_item}") |
|
existing_item_index = len(current_loras) |
|
current_loras.append(new_item) |
|
|
|
|
|
gallery_items = [(item["image"], item["title"]) for item in current_loras] |
|
|
|
if len(selected_indices) < 2: |
|
selected_indices.append(existing_item_index) |
|
else: |
|
gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.") |
|
|
|
|
|
selected_info_1 = "Select a LoRA 1" |
|
selected_info_2 = "Select a LoRA 2" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = current_loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: {lora1['title']} ✨" |
|
lora_image_1 = lora1['image'] if lora1['image'] else None |
|
if len(selected_indices) >= 2: |
|
lora2 = current_loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: {lora2['title']} ✨" |
|
lora_image_2 = lora2['image'] if lora2['image'] else None |
|
print("Finished adding custom LoRA") |
|
return ( |
|
current_loras, |
|
gr.update(value=gallery_items), |
|
selected_info_1, |
|
selected_info_2, |
|
selected_indices, |
|
lora_scale_1, |
|
lora_scale_2, |
|
lora_image_1, |
|
lora_image_2 |
|
) |
|
except Exception as e: |
|
print(e) |
|
gr.Warning(str(e)) |
|
return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update() |
|
else: |
|
return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update() |
|
|
|
def remove_custom_lora(selected_indices, current_loras): |
|
if current_loras: |
|
custom_lora_repo = current_loras[-1]['repo'] |
|
|
|
current_loras = current_loras[:-1] |
|
|
|
custom_lora_index = len(current_loras) |
|
if custom_lora_index in selected_indices: |
|
selected_indices.remove(custom_lora_index) |
|
|
|
gallery_items = [(item["image"], item["title"]) for item in current_loras] |
|
|
|
selected_info_1 = "Select a LoRA 1" |
|
selected_info_2 = "Select a LoRA 2" |
|
lora_scale_1 = 1.15 |
|
lora_scale_2 = 1.15 |
|
lora_image_1 = None |
|
lora_image_2 = None |
|
if len(selected_indices) >= 1: |
|
lora1 = current_loras[selected_indices[0]] |
|
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨" |
|
lora_image_1 = lora1['image'] |
|
if len(selected_indices) >= 2: |
|
lora2 = current_loras[selected_indices[1]] |
|
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨" |
|
lora_image_2 = lora2['image'] |
|
return ( |
|
current_loras, |
|
gr.update(value=gallery_items), |
|
selected_info_1, |
|
selected_info_2, |
|
selected_indices, |
|
lora_scale_1, |
|
lora_scale_2, |
|
lora_image_1, |
|
lora_image_2 |
|
) |
|
|
|
@spaces.GPU(duration=75) |
|
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress): |
|
print("Generating image...") |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
with calculateDuration("Generating image"): |
|
|
|
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( |
|
prompt=prompt_mash, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": 1.0}, |
|
output_type="pil", |
|
good_vae=good_vae, |
|
): |
|
yield img |
|
|
|
@spaces.GPU(duration=75) |
|
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed): |
|
pipe_i2i.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
image_input = load_image(image_input_path) |
|
final_image = pipe_i2i( |
|
prompt=prompt_mash, |
|
image=image_input, |
|
strength=image_strength, |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": 1.0}, |
|
output_type="pil", |
|
).images[0] |
|
return final_image |
|
|
|
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)): |
|
|
|
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt): |
|
translated = translator(prompt, max_length=512)[0]['translation_text'] |
|
print(f"Original prompt: {prompt}") |
|
print(f"Translated prompt: {translated}") |
|
prompt = translated |
|
|
|
if not selected_indices: |
|
raise gr.Error("You must select at least one LoRA before proceeding.") |
|
|
|
selected_loras = [loras_state[idx] for idx in selected_indices] |
|
|
|
|
|
prepends = [] |
|
appends = [] |
|
for lora in selected_loras: |
|
trigger_word = lora.get('trigger_word', '') |
|
if trigger_word: |
|
if lora.get("trigger_position") == "prepend": |
|
prepends.append(trigger_word) |
|
else: |
|
appends.append(trigger_word) |
|
prompt_mash = " ".join(prepends + [prompt] + appends) |
|
print("Prompt Mash: ", prompt_mash) |
|
|
|
|
|
with calculateDuration("Unloading LoRA"): |
|
pipe.unload_lora_weights() |
|
pipe_i2i.unload_lora_weights() |
|
|
|
print(pipe.get_active_adapters()) |
|
|
|
lora_names = [] |
|
lora_weights = [] |
|
with calculateDuration("Loading LoRA weights"): |
|
for idx, lora in enumerate(selected_loras): |
|
lora_name = f"lora_{idx}" |
|
lora_names.append(lora_name) |
|
lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2) |
|
lora_path = lora['repo'] |
|
weight_name = lora.get("weights") |
|
print(f"Lora Path: {lora_path}") |
|
if image_input is not None: |
|
if weight_name: |
|
pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name) |
|
else: |
|
pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name) |
|
else: |
|
if weight_name: |
|
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name) |
|
else: |
|
pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name) |
|
print("Loaded LoRAs:", lora_names) |
|
print("Adapter weights:", lora_weights) |
|
if image_input is not None: |
|
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights) |
|
else: |
|
pipe.set_adapters(lora_names, adapter_weights=lora_weights) |
|
print(pipe.get_active_adapters()) |
|
|
|
with calculateDuration("Randomizing seed"): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
|
|
if image_input is not None: |
|
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed) |
|
yield final_image, seed, gr.update(visible=False) |
|
else: |
|
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress) |
|
|
|
final_image = None |
|
step_counter = 0 |
|
for image in image_generator: |
|
step_counter += 1 |
|
final_image = image |
|
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>' |
|
yield image, seed, gr.update(value=progress_bar, visible=True) |
|
|
|
if final_image is None: |
|
raise gr.Error("Failed to generate image") |
|
|
|
yield final_image, seed, gr.update(value=progress_bar, visible=False) |
|
|
|
run_lora.zerogpu = True |
|
|
|
def get_huggingface_safetensors(link): |
|
split_link = link.split("/") |
|
if len(split_link) == 2: |
|
model_card = ModelCard.load(link) |
|
base_model = model_card.data.get("base_model") |
|
print(f"Base model: {base_model}") |
|
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: |
|
raise Exception("Not a FLUX LoRA!") |
|
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None) |
|
trigger_word = model_card.data.get("instance_prompt", "") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None |
|
fs = HfFileSystem() |
|
safetensors_name = None |
|
try: |
|
list_of_files = fs.ls(link, detail=False) |
|
for file in list_of_files: |
|
if file.endswith(".safetensors"): |
|
safetensors_name = file.split("/")[-1] |
|
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")): |
|
image_elements = file.split("/") |
|
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}" |
|
except Exception as e: |
|
print(e) |
|
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA") |
|
if not safetensors_name: |
|
raise gr.Error("No *.safetensors file found in the repository") |
|
return split_link[1], link, safetensors_name, trigger_word, image_url |
|
else: |
|
raise gr.Error("Invalid Hugging Face repository link") |
|
|
|
def check_custom_model(link): |
|
if link.endswith(".safetensors"): |
|
|
|
title = os.path.basename(link) |
|
repo = link |
|
path = None |
|
trigger_word = "" |
|
image_url = None |
|
return title, repo, path, trigger_word, image_url |
|
elif link.startswith("https://"): |
|
if "huggingface.co" in link: |
|
link_split = link.split("huggingface.co/") |
|
return get_huggingface_safetensors(link_split[1]) |
|
else: |
|
raise Exception("Unsupported URL") |
|
else: |
|
|
|
return get_huggingface_safetensors(link) |
|
|
|
def update_history(new_image, history): |
|
"""Updates the history gallery with the new image.""" |
|
if history is None: |
|
history = [] |
|
history.insert(0, new_image) |
|
return history |
|
|
|
css = ''' |
|
#gen_btn{height: 100%} |
|
#title{text-align: center} |
|
#title h1{font-size: 3em; display:inline-flex; align-items:center} |
|
#title img{width: 100px; margin-right: 0.25em} |
|
#gallery .grid-wrap{height: 5vh} |
|
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%} |
|
.custom_lora_card{margin-bottom: 1em} |
|
.card_internal{display: flex;height: 100px;margin-top: .5em} |
|
.card_internal img{margin-right: 1em} |
|
.styler{--form-gap-width: 0px !important} |
|
#progress{height:30px} |
|
#progress .generating{display:none} |
|
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px} |
|
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out} |
|
#component-8, .button_total{height: 100%; align-self: stretch;} |
|
#loaded_loras [data-testid="block-info"]{font-size:80%} |
|
#custom_lora_structure{background: var(--block-background-fill)} |
|
#custom_lora_btn{margin-top: auto;margin-bottom: 11px} |
|
#random_btn{font-size: 300%} |
|
#component-11{align-self: stretch;} |
|
footer {visibility: hidden;} |
|
''' |
|
|
|
|
|
|
|
huggingface_token = os.getenv("HF_TOKEN") |
|
|
|
model_path = snapshot_download( |
|
repo_id="black-forest-labs/FLUX.1-dev", |
|
repo_type="model", |
|
ignore_patterns=["*.md", "*..gitattributes"], |
|
local_dir="FLUX.1-dev", |
|
token=huggingface_token, |
|
) |
|
|
|
|
|
controlnet = FluxControlNetModel.from_pretrained( |
|
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16 |
|
).to(device) |
|
pipe_controlnet = FluxControlNetPipeline.from_pretrained( |
|
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16 |
|
) |
|
pipe_controlnet.to(device) |
|
|
|
|
|
|
|
MAX_SEED = 1000000 |
|
|
|
|
|
|
|
|
|
def process_input(input_image, upscale_factor): |
|
w, h = input_image.size |
|
w_original, h_original = w, h |
|
aspect_ratio = w / h |
|
|
|
was_resized = False |
|
|
|
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET: |
|
warnings.warn( |
|
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels." |
|
) |
|
gr.Info( |
|
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget." |
|
) |
|
input_image = input_image.resize( |
|
( |
|
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor), |
|
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor), |
|
) |
|
) |
|
was_resized = True |
|
|
|
|
|
w, h = input_image.size |
|
w = w - w % 8 |
|
h = h - h % 8 |
|
|
|
return input_image.resize((w, h)), w_original, h_original, was_resized |
|
|
|
MAX_PIXEL_BUDGET = 1024 * 1024 |
|
|
|
|
|
@spaces.GPU |
|
def upscale(input_image, progress=gr.Progress(track_tqdm=True)): |
|
if input_image is None: |
|
raise gr.Error("No image to upscale. Please generate an image first.") |
|
|
|
|
|
input_image, w_original, h_original, was_resized = process_input(input_image, 4) |
|
|
|
|
|
control_image = input_image.resize((4096, 4096)) |
|
|
|
generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED)) |
|
|
|
gr.Info("Upscaling image to 4096x4096...") |
|
upscaled_image = pipe_controlnet( |
|
prompt="", |
|
image=control_image, |
|
controlnet_conditioning_scale=0.6, |
|
num_inference_steps=28, |
|
guidance_scale=3.5, |
|
height=4096, |
|
width=4096, |
|
generator=generator, |
|
).images[0] |
|
|
|
return [input_image, upscaled_image] |
|
|
|
|
|
|
|
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as app: |
|
|
|
loras_state = gr.State(loras) |
|
selected_indices = gr.State([]) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
with gr.Column(scale=1): |
|
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"]) |
|
upscale_button = gr.Button("업스케일(4096X4096픽셀)", variant="secondary") |
|
with gr.Row(elem_id="loaded_loras"): |
|
with gr.Column(scale=1, min_width=25): |
|
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn") |
|
with gr.Column(scale=8): |
|
with gr.Row(): |
|
with gr.Column(scale=0, min_width=50): |
|
lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) |
|
with gr.Column(scale=3, min_width=100): |
|
selected_info_1 = gr.Markdown("Select a LoRA 1") |
|
with gr.Column(scale=5, min_width=50): |
|
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=1.15) |
|
with gr.Row(): |
|
remove_button_1 = gr.Button("Remove", size="sm") |
|
with gr.Column(scale=8): |
|
with gr.Row(): |
|
with gr.Column(scale=0, min_width=50): |
|
lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50) |
|
with gr.Column(scale=3, min_width=100): |
|
selected_info_2 = gr.Markdown("Select a LoRA 2") |
|
with gr.Column(scale=5, min_width=50): |
|
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=1.15) |
|
with gr.Row(): |
|
remove_button_2 = gr.Button("Remove", size="sm") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
with gr.Row(elem_id="custom_lora_structure"): |
|
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="ginipick/flux-lora-eric-cat", scale=3, min_width=150) |
|
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150) |
|
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False) |
|
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list") |
|
gallery = gr.Gallery( |
|
[(item["image"], item["title"]) for item in loras], |
|
label="Or pick from the LoRA Explorer gallery", |
|
allow_preview=False, |
|
columns=4, |
|
elem_id="gallery" |
|
) |
|
with gr.Column(): |
|
progress_bar = gr.Markdown(elem_id="progress", visible=False) |
|
result = ImageSlider( |
|
label="Generated Image", |
|
minimum=0, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
elem_id="result_slider" |
|
) |
|
with gr.Accordion("History", open=False): |
|
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input image", type="filepath") |
|
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75) |
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) |
|
|
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) |
|
|
|
gallery.select( |
|
update_selection, |
|
inputs=[selected_indices, loras_state, width, height], |
|
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height, lora_image_1, lora_image_2]) |
|
remove_button_1.click( |
|
remove_lora_1, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] |
|
) |
|
remove_button_2.click( |
|
remove_lora_2, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] |
|
) |
|
randomize_button.click( |
|
randomize_loras, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, prompt] |
|
) |
|
add_custom_lora_button.click( |
|
add_custom_lora, |
|
inputs=[custom_lora, selected_indices, loras_state], |
|
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] |
|
) |
|
remove_custom_lora_button.click( |
|
remove_custom_lora, |
|
inputs=[selected_indices, loras_state], |
|
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2] |
|
) |
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state], |
|
outputs=[result, seed, progress_bar] |
|
).then( |
|
fn=lambda x, history: update_history(x, history), |
|
inputs=[result, history_gallery], |
|
outputs=history_gallery, |
|
) |
|
|
|
|
|
upscale_button.click( |
|
upscale, |
|
inputs=[result], |
|
outputs=[result] |
|
) |
|
|
|
app.queue() |
|
app.launch() |