|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import torch |
|
import pyewts |
|
import noisereduce as nr |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from num2tib.core import convert |
|
from num2tib.core import convert2text |
|
import re |
|
|
|
def replace_numbers_with_convert(sentence, wylie=True): |
|
pattern = r'\d+(\.\d+)?' |
|
def replace(match): |
|
return convert(match.group(), wylie) |
|
result = re.sub(pattern, replace, sentence) |
|
|
|
return result |
|
|
|
converter = pyewts.pyewts() |
|
checkpoint = "TenzinGayche/TTS_run3_ep20_174k_b" |
|
processor = SpeechT5Processor.from_pretrained(checkpoint) |
|
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) |
|
model.to('cuda') |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
speaker_embeddings = { |
|
"Lhasa(female)": "female_2.npy", |
|
|
|
} |
|
|
|
replacements = [ |
|
('_', '_'), |
|
('*', 'v'), |
|
('`', ';'), |
|
('~', ','), |
|
('+', ','), |
|
('\\', ';'), |
|
('|', ';'), |
|
('╚',''), |
|
('╗','') |
|
] |
|
def cleanup_text(inputs): |
|
for src, dst in replacements: |
|
inputs = inputs.replace(src, dst) |
|
return inputs |
|
def predict(text, speaker): |
|
if len(text.strip()) == 0: |
|
return (16000, np.zeros(0).astype(np.int16)) |
|
text = converter.toWylie(text) |
|
text=cleanup_text(text) |
|
text=replace_numbers_with_convert(text) |
|
inputs = processor(text=text, return_tensors="pt") |
|
|
|
input_ids = inputs["input_ids"] |
|
input_ids = input_ids[..., :model.config.max_text_positions] |
|
speaker_embedding = np.load(speaker_embeddings[speaker]) |
|
speaker_embedding = torch.tensor(speaker_embedding) |
|
speech = model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda')) |
|
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000) |
|
return (16000, speech) |
|
|
|
|
|
title = "Tibetan TTS" |
|
|
|
description = """ |
|
Feedbacks: https://forms.gle/psbZnXGeBWXptkvs9 |
|
""" |
|
article = """ |
|
<div style='margin:20px auto;'> |
|
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> | |
|
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> | |
|
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p> |
|
<pre> |
|
@article{Ao2021SpeechT5, |
|
title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing}, |
|
author = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei}, |
|
eprint={2110.07205}, |
|
archivePrefix={arXiv}, |
|
primaryClass={eess.AS}, |
|
year={2021} |
|
} |
|
</pre> |
|
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p> |
|
</div> |
|
""" |
|
|
|
examples = [ |
|
["ད་དེ་ཚོ་འདི་བྱེད་དགོས་རེད་ ན་ཚ་ མ་ཡོང་སྔོན་ལ་ཁོ་རང་ལ་ཡང་ཁྱི་ཁོ་རང་ཁོ་ལ་ཡང་ཁབ་རྒྱག་ཡ་ཡོད་རེད། ཨུན་སྔོན་འགོག་དང་རཱབྷིསས་ཁབ་རྒྱག་ཡ་ཡོད་རེད་ད།", "Lhasa(female)"], |
|
["སྟོབས་ཆེན་རྒྱལ་ཁབ་ཉི་ཤུའི་ལྷན་ཚོགས་ཐོག་ལ་རྒྱ་ནག་གཞུང་གིས་བོད་ནང་རིག་གཞུང་རྩ་གཏོར་ཀྱི་སྲིད་བྱུས་ཁག་དཔར་རིས་ཐོག་ནས་ལས་འགུལ་སྤེལ་བའི་སྐོར འཇམ་དབྱངས་རྒྱ་མཚོ་ལགས་ཀྱིས་སྙན་སྒྲོན་གནང་གི་རེད།", "Lhasa(female)"], |
|
["དངོས་གནས་ལབ་དགོས་རཱ་ད། མི་དབུལ་པོ་དེ་ཚོ་ལ་ག་རེ་ལབ་དགོས་རེད། སྦྱིན་པ་གཏང་ཡ་ཡོད་རཱ། ཨུན། དེ་འདྲ་གི་ལས་འགུལ་དེ་འདྲའི་མང་པོ་བརྩམས་ཀི་འདུག་བ། དེ་ཚོ་ཡང་ངས་ཚད་ལས་བརྒལ་བའི་ཡག་པོ་རེད་དྲན་གི་འདུག། ", "Lhasa(female)"], |
|
["ཁོང་རྣམ་པ་ནི་སྤྱིར་བཏང་གི་གང་ཟག་ཅིག་མ་ཡིན་པར་མི་རབས་ནས་མི་རབས་རྒྱུད་པ་འཛིན་པའི་ནོར་བུ་ཡིན་ཞིང་། ", "Lhasa(female)"], |
|
["ཨ་ལེ། ཨེ་ནས་སྤྱིར་བཏང་ད་ང་ཚོ་ད་ལྟ་ཁྱེད་རང་གིས་དམིགས་ཡུལ་ད་གལ་ཆེན་པོ་བརྩིས་ནས།", "Lhasa(female)"], |
|
["ཀུན་གླེང་གསར་འགྱུར། ༢༠༢༣་ལོའི་ཟླ་༩ ཚེས་༢༧ །", "Lhasa(female)"], |
|
] |
|
gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Text(label="Input Text"), |
|
gr.Radio(label="Speaker", choices=[ |
|
"Lhasa(female)", |
|
|
|
], |
|
value="Lhasa(female)"), |
|
], |
|
outputs=[ |
|
gr.Audio(label="Generated Speech", type="numpy"), |
|
], |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
).launch() |
|
|