|
from typing import Dict |
|
import librosa |
|
import numpy as np |
|
import torch |
|
import pyewts |
|
import noisereduce as nr |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan |
|
from num2tib.core import convert |
|
from num2tib.core import convert2text |
|
import re |
|
converter = pyewts.pyewts() |
|
def replace_numbers_with_convert(sentence, wylie=True): |
|
pattern = r'\d+(\.\d+)?' |
|
def replace(match): |
|
return convert(match.group(), wylie) |
|
result = re.sub(pattern, replace, sentence) |
|
|
|
return result |
|
|
|
def cleanup_text(inputs): |
|
for src, dst in replacements: |
|
inputs = inputs.replace(src, dst) |
|
return inputs |
|
|
|
speaker_embeddings = { |
|
"Lhasa(female)": "female_2.npy", |
|
|
|
} |
|
|
|
replacements = [ |
|
('_', '_'), |
|
('*', 'v'), |
|
('`', ';'), |
|
('~', ','), |
|
('+', ','), |
|
('\\', ';'), |
|
('|', ';'), |
|
('β',''), |
|
('β','') |
|
] |
|
|
|
|
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.processor = SpeechT5Processor.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b") |
|
self.model = SpeechT5ForTextToSpeech.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b") |
|
self.model.to('cuda') |
|
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
|
|
|
|
def __call__(self, data: Dict[str]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the deserialized audio file as bytes |
|
Return: |
|
A :obj:`dict`:. base64 encoded image |
|
""" |
|
|
|
|
|
if len(text.strip()) == 0: |
|
return (16000, np.zeros(0).astype(np.int16)) |
|
text = converter.toWylie(text) |
|
text=cleanup_text(text) |
|
text=replace_numbers_with_convert(text) |
|
inputs = self.processor(text=text, return_tensors="pt") |
|
|
|
input_ids = inputs["input_ids"] |
|
input_ids = input_ids[..., :self.model.config.max_text_positions] |
|
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)']) |
|
speaker_embedding = torch.tensor(speaker_embedding) |
|
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda')) |
|
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000) |
|
return (16000, speech) |
|
|