TenzinGayche commited on
Commit
0b0fa8e
β€’
1 Parent(s): 4cff53d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -7
app.py CHANGED
@@ -4,6 +4,7 @@ import numpy as np
4
  import torch
5
  import pyewts
6
  import noisereduce as nr
 
7
  def remove_repeated_words(text):
8
  # Tokenize the input text into words
9
  words = text.split()
@@ -30,12 +31,6 @@ def remove_repeated_words(text):
30
  result = ' '.join(new_words)
31
  return result
32
 
33
- # Example usage
34
- input_text = " hi hi hi are you fine fine fine or not"
35
- output_text = remove_repeated_words(input_text)
36
- print(output_text)
37
-
38
- from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
39
 
40
  converter = pyewts.pyewts()
41
  checkpoint = "TenzinGayche/TTS_run3_ep20_174k_b"
@@ -74,7 +69,7 @@ def predict(text, speaker):
74
  # limit input length
75
  input_ids = inputs["input_ids"]
76
  input_ids = input_ids[..., :model.config.max_text_positions]
77
- speaker_embedding = np.load(speaker_embeddings[speaker])
78
  speaker_embedding = torch.tensor(speaker_embedding)
79
  speech = model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda'))
80
  speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
 
4
  import torch
5
  import pyewts
6
  import noisereduce as nr
7
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
8
  def remove_repeated_words(text):
9
  # Tokenize the input text into words
10
  words = text.split()
 
31
  result = ' '.join(new_words)
32
  return result
33
 
 
 
 
 
 
 
34
 
35
  converter = pyewts.pyewts()
36
  checkpoint = "TenzinGayche/TTS_run3_ep20_174k_b"
 
69
  # limit input length
70
  input_ids = inputs["input_ids"]
71
  input_ids = input_ids[..., :model.config.max_text_positions]
72
+ speaker_embedding = np.load(speaker_embeddings[speaker], allow_pickle=True)
73
  speaker_embedding = torch.tensor(speaker_embedding)
74
  speech = model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda'))
75
  speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)