import gradio as gr import librosa import numpy as np import torch import pyewts import noisereduce as nr from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from num2tib.core import convert from num2tib.core import convert2text import re device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def replace_numbers_with_convert(sentence, wylie=True): pattern = r'\d+(\.\d+)?' def replace(match): return convert(match.group(), wylie) result = re.sub(pattern, replace, sentence) return result converter = pyewts.pyewts() checkpoint = "TenzinGayche/TTS_run3_ep20_174k_b" processor = SpeechT5Processor.from_pretrained(checkpoint) model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint) model.to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speaker_embeddings = { "Lhasa(female)": "female_2.npy", } replacements = [ ('_', '_'), ('*', 'v'), ('`', ';'), ('~', ','), ('+', ','), ('\\', ';'), ('|', ';'), ('╚',''), ('╗','') ] def cleanup_text(inputs): for src, dst in replacements: inputs = inputs.replace(src, dst) return inputs def predict(text, speaker): if len(text.strip()) == 0: return (16000, np.zeros(0).astype(np.int16)) text = converter.toWylie(text) text=cleanup_text(text) text=replace_numbers_with_convert(text) inputs = processor(text=text, return_tensors="pt") # limit input length input_ids = inputs["input_ids"] input_ids = input_ids[..., :model.config.max_text_positions] speaker_embedding = np.load(speaker_embeddings[speaker]) speaker_embedding = torch.tensor(speaker_embedding) speech = model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda')) speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000) return (16000, speech) title = "Tibetan TTS" description = """ Feedbacks: https://forms.gle/psbZnXGeBWXptkvs9 """ article = """
References: SpeechT5 paper | original GitHub | original weights
@article{Ao2021SpeechT5, title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing}, author = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei}, eprint={2110.07205}, archivePrefix={arXiv}, primaryClass={eess.AS}, year={2021} }
Speaker embeddings were generated from CMU ARCTIC using this script.