File size: 4,240 Bytes
76b423c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import pandas as pd
import plotly.express as px

ATTN_DATA = [
    # open llm
    "Model πŸ€—",
    "Experiment πŸ§ͺ",
    "Params (B)",
    "Architecture πŸ›οΈ",
    "Open LLM Score (%)",
    # deployment settings
    "Backend 🏭",
    "Quantization πŸ—œοΈ",
    "Precision πŸ“₯",
    "Attention πŸ‘οΈ",
    "Kernel βš›οΈ",
    # primary measurements
    "Prefill (s)",
    "Decode (tokens/s)",
    # speedups
    "Prefill Speedup (%)",
    "Decode Speedup (%)",
]


def get_attn_df(open_llm_perf_df):
    copy_df = open_llm_perf_df.copy()
    copy_df["Quantization & Kernel"] = (
        copy_df["Quantization πŸ—œοΈ"] + " & " + copy_df["Kernel βš›οΈ"]
    )

    eager_df = copy_df[(copy_df["Attention πŸ‘οΈ"] == "Eager")]
    sdpa_df = copy_df[(copy_df["Attention πŸ‘οΈ"] == "SDPA")]
    fa2_df = copy_df[(copy_df["Attention πŸ‘οΈ"] == "FAv2")]

    sdpa_df = pd.merge(
        eager_df,
        sdpa_df,
        on=["Model πŸ€—", "Quantization & Kernel"],
        suffixes=["", " other"],
    )
    fa2_df = pd.merge(
        eager_df,
        fa2_df,
        on=["Model πŸ€—", "Quantization & Kernel"],
        suffixes=["", " other"],
    )

    attn_df = pd.concat([sdpa_df, fa2_df])

    # compute speedups
    attn_df["Prefill Speedup (%)"] = (
        (attn_df["Prefill (s)"] / attn_df["Prefill (s) other"]) * 100
    ).round(2) - 100
    attn_df["Decode Speedup (%)"] = (
        (attn_df["Decode (tokens/s) other"] / attn_df["Decode (tokens/s)"]) * 100
    ).round(2) - 100

    return attn_df


def get_attn_prefill_fig(open_llm_perf_df):
    attn_df = get_attn_df(open_llm_perf_df)
    # plot
    prefill_fig = px.box(
        attn_df,
        x="Architecture πŸ›οΈ",
        y="Prefill Speedup (%)",
        color_discrete_sequence=px.colors.qualitative.Light24,
        custom_data=ATTN_DATA,
        color="Attention πŸ‘οΈ other",
        points="all",
    )
    # add hover data
    prefill_fig.update_traces(
        hovertemplate="<br>".join(
            [
                f"<b>{column}:</b> %{{customdata[{i}]}}"
                for i, column in enumerate(ATTN_DATA)
            ]
        )
    )
    # add layout
    prefill_fig.update_layout(
        title={
            "text": "Prefill Speedup per Architecture, Compared To Eager Attention",
            "xanchor": "center",
            "yanchor": "top",
            "y": 0.95,
            "x": 0.5,
        },
        yaxis_title="Prefill Speedup (%)",
        xaxis_title="LLM Architecture",
        legend_title="Attention",
        width=1200,
        height=600,
    )

    return prefill_fig


def get_attn_decode_fig(open_llm_perf_df):
    attn_df = get_attn_df(open_llm_perf_df)
    print(len(attn_df))
    # plot
    decode_fig = px.box(
        attn_df,
        x="Architecture πŸ›οΈ",
        y="Decode Speedup (%)",
        color_discrete_sequence=px.colors.qualitative.Light24,
        custom_data=ATTN_DATA,
        color="Attention πŸ‘οΈ other",
        points="all",
    )
    # add hover data
    decode_fig.update_traces(
        hovertemplate="<br>".join(
            [
                f"<b>{column}:</b> %{{customdata[{i}]}}"
                for i, column in enumerate(ATTN_DATA)
            ]
        )
    )
    # add layout
    decode_fig.update_layout(
        title={
            "text": "Decode Speedup per Architecture, Compared To Eager Attention",
            "xanchor": "center",
            "yanchor": "top",
            "y": 0.95,
            "x": 0.5,
        },
        yaxis_title="Decode Speedup (%)",
        xaxis_title="LLM Architecture",
        legend_title="Attention",
        width=1200,
        height=600,
    )

    return decode_fig


def create_attn_plots(open_llm_perf_df):
    # descriptive text
    gr.HTML("πŸ‘† Hover over the points πŸ‘† for additional information.", elem_id="text")
    # get figures
    prefill_fig = get_attn_prefill_fig(open_llm_perf_df)
    decode_fig = get_attn_decode_fig(open_llm_perf_df)

    # create plots
    prefill_plot = gr.components.Plot(
        value=prefill_fig, elem_id="plot", show_label=False
    )
    decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False)

    return prefill_plot, decode_plot