Spaces:
Running
Running
File size: 4,240 Bytes
76b423c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import pandas as pd
import plotly.express as px
ATTN_DATA = [
# open llm
"Model π€",
"Experiment π§ͺ",
"Params (B)",
"Architecture ποΈ",
"Open LLM Score (%)",
# deployment settings
"Backend π",
"Quantization ποΈ",
"Precision π₯",
"Attention ποΈ",
"Kernel βοΈ",
# primary measurements
"Prefill (s)",
"Decode (tokens/s)",
# speedups
"Prefill Speedup (%)",
"Decode Speedup (%)",
]
def get_attn_df(open_llm_perf_df):
copy_df = open_llm_perf_df.copy()
copy_df["Quantization & Kernel"] = (
copy_df["Quantization ποΈ"] + " & " + copy_df["Kernel βοΈ"]
)
eager_df = copy_df[(copy_df["Attention ποΈ"] == "Eager")]
sdpa_df = copy_df[(copy_df["Attention ποΈ"] == "SDPA")]
fa2_df = copy_df[(copy_df["Attention ποΈ"] == "FAv2")]
sdpa_df = pd.merge(
eager_df,
sdpa_df,
on=["Model π€", "Quantization & Kernel"],
suffixes=["", " other"],
)
fa2_df = pd.merge(
eager_df,
fa2_df,
on=["Model π€", "Quantization & Kernel"],
suffixes=["", " other"],
)
attn_df = pd.concat([sdpa_df, fa2_df])
# compute speedups
attn_df["Prefill Speedup (%)"] = (
(attn_df["Prefill (s)"] / attn_df["Prefill (s) other"]) * 100
).round(2) - 100
attn_df["Decode Speedup (%)"] = (
(attn_df["Decode (tokens/s) other"] / attn_df["Decode (tokens/s)"]) * 100
).round(2) - 100
return attn_df
def get_attn_prefill_fig(open_llm_perf_df):
attn_df = get_attn_df(open_llm_perf_df)
# plot
prefill_fig = px.box(
attn_df,
x="Architecture ποΈ",
y="Prefill Speedup (%)",
color_discrete_sequence=px.colors.qualitative.Light24,
custom_data=ATTN_DATA,
color="Attention ποΈ other",
points="all",
)
# add hover data
prefill_fig.update_traces(
hovertemplate="<br>".join(
[
f"<b>{column}:</b> %{{customdata[{i}]}}"
for i, column in enumerate(ATTN_DATA)
]
)
)
# add layout
prefill_fig.update_layout(
title={
"text": "Prefill Speedup per Architecture, Compared To Eager Attention",
"xanchor": "center",
"yanchor": "top",
"y": 0.95,
"x": 0.5,
},
yaxis_title="Prefill Speedup (%)",
xaxis_title="LLM Architecture",
legend_title="Attention",
width=1200,
height=600,
)
return prefill_fig
def get_attn_decode_fig(open_llm_perf_df):
attn_df = get_attn_df(open_llm_perf_df)
print(len(attn_df))
# plot
decode_fig = px.box(
attn_df,
x="Architecture ποΈ",
y="Decode Speedup (%)",
color_discrete_sequence=px.colors.qualitative.Light24,
custom_data=ATTN_DATA,
color="Attention ποΈ other",
points="all",
)
# add hover data
decode_fig.update_traces(
hovertemplate="<br>".join(
[
f"<b>{column}:</b> %{{customdata[{i}]}}"
for i, column in enumerate(ATTN_DATA)
]
)
)
# add layout
decode_fig.update_layout(
title={
"text": "Decode Speedup per Architecture, Compared To Eager Attention",
"xanchor": "center",
"yanchor": "top",
"y": 0.95,
"x": 0.5,
},
yaxis_title="Decode Speedup (%)",
xaxis_title="LLM Architecture",
legend_title="Attention",
width=1200,
height=600,
)
return decode_fig
def create_attn_plots(open_llm_perf_df):
# descriptive text
gr.HTML("π Hover over the points π for additional information.", elem_id="text")
# get figures
prefill_fig = get_attn_prefill_fig(open_llm_perf_df)
decode_fig = get_attn_decode_fig(open_llm_perf_df)
# create plots
prefill_plot = gr.components.Plot(
value=prefill_fig, elem_id="plot", show_label=False
)
decode_plot = gr.components.Plot(value=decode_fig, elem_id="plot", show_label=False)
return prefill_plot, decode_plot
|