Spaces:
Running
Running
BenchmarkBot
commited on
Commit
β’
0321f62
1
Parent(s):
e471c70
test new benchmarks
Browse files- app.py +174 -220
- src/utils.py +5 -0
app.py
CHANGED
@@ -26,95 +26,77 @@ LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
|
26 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
27 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
28 |
|
29 |
-
|
30 |
-
TRUE_WEIGHT_CLASSES = {
|
31 |
-
"6B": "7B",
|
32 |
-
}
|
33 |
-
|
34 |
ALL_COLUMNS_MAPPING = {
|
35 |
-
"
|
36 |
-
"
|
|
|
37 |
#
|
38 |
"backend.name": "Backend π",
|
39 |
"backend.torch_dtype": "Dtype π₯",
|
|
|
40 |
"optimizations": "Optimizations π οΈ",
|
41 |
#
|
|
|
|
|
42 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
43 |
-
|
44 |
#
|
45 |
-
"best_scored_model": "Best Scored Model π",
|
46 |
-
"best_score": "Best Score (%) β¬οΈ",
|
47 |
}
|
48 |
ALL_COLUMNS_DATATYPES = [
|
|
|
49 |
"str",
|
50 |
"str",
|
51 |
#
|
52 |
"str",
|
53 |
"str",
|
54 |
"str",
|
|
|
55 |
#
|
|
|
56 |
"number",
|
57 |
-
# "number",
|
58 |
-
#
|
59 |
-
"markdown",
|
60 |
"number",
|
|
|
|
|
61 |
]
|
62 |
-
SORTING_COLUMN = ["
|
63 |
|
64 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
65 |
|
66 |
|
67 |
-
def get_benchmark_df(benchmark="1xA100-80GB"):
|
68 |
if llm_perf_dataset_repo:
|
69 |
llm_perf_dataset_repo.git_pull()
|
70 |
|
71 |
-
# load
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
)
|
76 |
-
|
77 |
-
bench_df["merge_id"] = bench_df.experiment_name.str.split("_1_1000_").str[-1]
|
78 |
-
scores_df["merge_id"] = scores_df.weight_class + "_" + scores_df.model_type
|
79 |
-
merged_df = bench_df.merge(scores_df, on="merge_id")
|
80 |
-
|
81 |
-
# fix some weight classes
|
82 |
-
merged_df["weight_class"] = merged_df["weight_class"].apply(
|
83 |
-
lambda x: TRUE_WEIGHT_CLASSES[x] if x in TRUE_WEIGHT_CLASSES else x
|
84 |
-
)
|
85 |
-
|
86 |
-
# convert peak memory to int
|
87 |
-
# merged_df["forward.peak_memory(MB)"] = merged_df["forward.peak_memory(MB)"].apply(
|
88 |
-
# lambda x: int(x)
|
89 |
-
# )
|
90 |
-
|
91 |
# add optimizations
|
92 |
-
merged_df["optimizations"] = merged_df[
|
93 |
-
|
94 |
-
].apply(
|
95 |
-
lambda x: ", ".join(
|
96 |
-
filter(
|
97 |
-
lambda x: x != "",
|
98 |
-
[
|
99 |
-
"BetterTransformer" if x[0] == True else "",
|
100 |
-
"LLM.int8" if x[1] == True else "",
|
101 |
-
"LLM.fp4" if x[2] == True else "",
|
102 |
-
],
|
103 |
-
),
|
104 |
-
)
|
105 |
-
if any([x[0] == True, x[1] == True, x[2] == True])
|
106 |
-
else "None",
|
107 |
-
axis=1,
|
108 |
)
|
109 |
-
|
110 |
-
merged_df["
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
merged_df["
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
return merged_df
|
120 |
|
@@ -122,12 +104,11 @@ def get_benchmark_df(benchmark="1xA100-80GB"):
|
|
122 |
def get_benchmark_table(bench_df):
|
123 |
# add * to quantized models score
|
124 |
copy_df = bench_df.copy()
|
125 |
-
|
126 |
copy_df["best_score"] = copy_df.apply(
|
127 |
lambda x: f"{x['best_score']}**" if x["quantized"] else x["best_score"],
|
128 |
axis=1,
|
129 |
)
|
130 |
-
|
131 |
# sort
|
132 |
copy_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
|
133 |
# filter
|
@@ -135,62 +116,45 @@ def get_benchmark_table(bench_df):
|
|
135 |
# rename
|
136 |
copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
|
137 |
# transform
|
138 |
-
copy_df["Type π€"] = copy_df["Type π€"].apply(process_model_type)
|
139 |
copy_df["Best Scored Model π"] = copy_df["Best Scored Model π"].apply(
|
140 |
process_model_name
|
141 |
)
|
142 |
-
|
143 |
return copy_df
|
144 |
|
145 |
|
146 |
def get_benchmark_plot(bench_df):
|
147 |
fig = px.scatter(
|
148 |
bench_df,
|
149 |
-
x="generate.latency(s)",
|
150 |
y="best_score",
|
|
|
|
|
151 |
color="model_type",
|
152 |
-
|
153 |
-
custom_data=[
|
154 |
-
"best_scored_model",
|
155 |
-
"backend.name",
|
156 |
-
"backend.torch_dtype",
|
157 |
-
"optimizations",
|
158 |
-
# "forward.peak_memory(MB)",
|
159 |
-
"generate.throughput(tokens/s)",
|
160 |
-
],
|
161 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
162 |
)
|
163 |
-
|
164 |
fig.update_layout(
|
165 |
title={
|
166 |
-
"text": "Model Score vs. Latency",
|
167 |
"y": 0.95,
|
168 |
"x": 0.5,
|
169 |
"xanchor": "center",
|
170 |
"yanchor": "top",
|
171 |
},
|
172 |
-
xaxis_title="
|
173 |
yaxis_title="Open LLM Score (%)",
|
174 |
legend_title="Model Type",
|
175 |
width=1200,
|
176 |
height=600,
|
177 |
)
|
178 |
-
|
179 |
fig.update_traces(
|
180 |
hovertemplate="<br>".join(
|
181 |
[
|
182 |
-
"
|
183 |
-
|
184 |
-
"Load Datatype: %{customdata[2]}",
|
185 |
-
"Optimizations: %{customdata[3]}",
|
186 |
-
# "Peak Memory (MB): %{customdata[4]}",
|
187 |
-
"Throughput (tokens/s): %{customdata[4]}",
|
188 |
-
"Per 1000 Tokens Latency (s): %{x}",
|
189 |
-
"Open LLM Score (%): %{y}",
|
190 |
]
|
191 |
)
|
192 |
)
|
193 |
-
|
194 |
return fig
|
195 |
|
196 |
|
@@ -200,11 +164,10 @@ def filter_query(
|
|
200 |
datatypes,
|
201 |
optimizations,
|
202 |
score,
|
203 |
-
|
204 |
-
benchmark="1xA100-80GB",
|
205 |
):
|
206 |
raw_df = get_benchmark_df(benchmark=benchmark)
|
207 |
-
|
208 |
filtered_df = raw_df[
|
209 |
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
|
210 |
& raw_df["backend.name"].isin(backends)
|
@@ -221,155 +184,146 @@ def filter_query(
|
|
221 |
else True
|
222 |
)
|
223 |
& (raw_df["best_score"] >= score)
|
224 |
-
|
225 |
]
|
226 |
-
|
227 |
filtered_table = get_benchmark_table(filtered_df)
|
228 |
filtered_plot = get_benchmark_plot(filtered_df)
|
229 |
-
|
230 |
return filtered_table, filtered_plot
|
231 |
|
232 |
|
233 |
-
#
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
|
238 |
# Demo interface
|
239 |
demo = gr.Blocks(css=custom_css)
|
240 |
with demo:
|
241 |
# leaderboard title
|
242 |
gr.HTML(TITLE)
|
243 |
-
|
244 |
# introduction text
|
245 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
|
246 |
|
247 |
-
#
|
248 |
-
gr.
|
249 |
-
"
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
)
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
# )
|
266 |
-
|
267 |
-
# with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
|
268 |
-
# gr.HTML(
|
269 |
-
# "π Hover over the points π for additional information.",
|
270 |
-
# elem_id="descriptive-text",
|
271 |
-
# )
|
272 |
-
# # Original leaderboard plot
|
273 |
-
# A100_plotly = gr.components.Plot(
|
274 |
-
# value=A100_plot,
|
275 |
-
# elem_id="1xA100-plot",
|
276 |
-
# show_label=False,
|
277 |
-
# )
|
278 |
-
|
279 |
-
# with gr.TabItem("Control Panel ποΈ", id=2):
|
280 |
-
# gr.HTML(
|
281 |
-
# "Use this control panel to filter the leaderboard's table and plot.",
|
282 |
-
# elem_id="descriptive-text",
|
283 |
-
# )
|
284 |
-
# # control panel interface
|
285 |
-
# with gr.Row():
|
286 |
-
# with gr.Column(scale=1):
|
287 |
-
# search_bar = gr.Textbox(
|
288 |
-
# label="Model π€",
|
289 |
-
# info="π Search for a model name",
|
290 |
-
# elem_id="search-bar",
|
291 |
-
# )
|
292 |
-
# with gr.Column(scale=1):
|
293 |
-
# with gr.Box():
|
294 |
-
# score_slider = gr.Slider(
|
295 |
-
# label="Open LLM Score π",
|
296 |
-
# info="ποΈ Slide to minimum Open LLM score",
|
297 |
-
# value=0,
|
298 |
-
# elem_id="threshold-slider",
|
299 |
-
# )
|
300 |
-
# # with gr.Column(scale=1):
|
301 |
-
# # with gr.Box():
|
302 |
-
# # memory_slider = gr.Slider(
|
303 |
-
# # label="Peak Memory (MB) π",
|
304 |
-
# # info="ποΈ Slide to maximum Peak Memory",
|
305 |
-
# # minimum=0,
|
306 |
-
# # maximum=80 * 1024,
|
307 |
-
# # value=80 * 1024,
|
308 |
-
# # elem_id="memory-slider",
|
309 |
-
# # )
|
310 |
-
|
311 |
-
# with gr.Row():
|
312 |
-
# with gr.Column(scale=1):
|
313 |
-
# backend_checkboxes = gr.CheckboxGroup(
|
314 |
-
# label="Backends π",
|
315 |
-
# choices=["pytorch", "onnxruntime"],
|
316 |
-
# value=["pytorch", "onnxruntime"],
|
317 |
-
# info="βοΈ Select the backends",
|
318 |
-
# elem_id="backend-checkboxes",
|
319 |
-
# )
|
320 |
-
# with gr.Column(scale=1):
|
321 |
-
# datatype_checkboxes = gr.CheckboxGroup(
|
322 |
-
# label="Dtypes π₯",
|
323 |
-
# choices=["float32", "float16"],
|
324 |
-
# value=["float32", "float16"],
|
325 |
-
# info="βοΈ Select the load dtypes",
|
326 |
-
# elem_id="dtype-checkboxes",
|
327 |
-
# )
|
328 |
-
# with gr.Column(scale=2):
|
329 |
-
# optimizations_checkboxes = gr.CheckboxGroup(
|
330 |
-
# label="Optimizations π οΈ",
|
331 |
-
# choices=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
|
332 |
-
# value=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
|
333 |
-
# info="βοΈ Select the optimizations",
|
334 |
-
# elem_id="optimizations-checkboxes",
|
335 |
-
# )
|
336 |
-
|
337 |
-
# with gr.Row():
|
338 |
-
# filter_button = gr.Button(
|
339 |
-
# value="Filter π",
|
340 |
-
# elem_id="filter-button",
|
341 |
-
# )
|
342 |
-
|
343 |
-
# with gr.TabItem("About π", id=3):
|
344 |
-
# gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
|
345 |
-
# gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text")
|
346 |
-
|
347 |
-
# demo.load(
|
348 |
-
# change_tab,
|
349 |
-
# A100_tabs,
|
350 |
-
# _js=custom_js,
|
351 |
-
# )
|
352 |
-
|
353 |
-
# filter_button.click(
|
354 |
-
# filter_query,
|
355 |
-
# [
|
356 |
-
# search_bar,
|
357 |
-
# backend_checkboxes,
|
358 |
-
# datatype_checkboxes,
|
359 |
-
# optimizations_checkboxes,
|
360 |
-
# score_slider,
|
361 |
-
# # memory_slider,
|
362 |
-
# ],
|
363 |
-
# [A100_leaderboard, A100_plotly],
|
364 |
-
# )
|
365 |
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
|
374 |
|
375 |
# Restart space every hour
|
|
|
26 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
27 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
ALL_COLUMNS_MAPPING = {
|
30 |
+
"weight_class": "Weight Class ποΈ",
|
31 |
+
"model_type": "LLM Type π€",
|
32 |
+
"best_scored_model": "Best Scored LLM π",
|
33 |
#
|
34 |
"backend.name": "Backend π",
|
35 |
"backend.torch_dtype": "Dtype π₯",
|
36 |
+
"quantization": "Quantization ποΈ",
|
37 |
"optimizations": "Optimizations π οΈ",
|
38 |
#
|
39 |
+
"best_score": "Best Score (%) β¬οΈ",
|
40 |
+
"generate.peak_memory(MB)": "Memory (MB) β¬οΈ",
|
41 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
42 |
+
"generate.energy_consumption(kWh/token)": "Energy (kWh/token) β¬οΈ",
|
43 |
#
|
|
|
|
|
44 |
}
|
45 |
ALL_COLUMNS_DATATYPES = [
|
46 |
+
"str",
|
47 |
"str",
|
48 |
"str",
|
49 |
#
|
50 |
"str",
|
51 |
"str",
|
52 |
"str",
|
53 |
+
"str",
|
54 |
#
|
55 |
+
"str",
|
56 |
"number",
|
|
|
|
|
|
|
57 |
"number",
|
58 |
+
"number",
|
59 |
+
#
|
60 |
]
|
61 |
+
SORTING_COLUMN = ["perf_distance"]
|
62 |
|
63 |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
|
64 |
|
65 |
|
66 |
+
def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
|
67 |
if llm_perf_dataset_repo:
|
68 |
llm_perf_dataset_repo.git_pull()
|
69 |
|
70 |
+
# load data
|
71 |
+
benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
|
72 |
+
clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv")
|
73 |
+
# merge on model
|
74 |
+
merged_df = benchmark_df.merge(
|
75 |
+
clusters_df, left_on="model", right_on="best_scored_model"
|
76 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# add optimizations
|
78 |
+
merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
|
79 |
+
lambda x: "BetterTransformer" if x else "None"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
)
|
81 |
+
# add quantization scheme
|
82 |
+
merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
|
83 |
+
lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
|
84 |
+
)
|
85 |
+
# distance to 100% score, normalized to 0, 1
|
86 |
+
score_distance = (100 - merged_df["best_score"]) / 100
|
87 |
+
# distance to 0s latency, normalized to 0, 1
|
88 |
+
latency_distance = merged_df["generate.latency(s)"] / (
|
89 |
+
merged_df["generate.latency(s)"].max() - merged_df["generate.latency(s)"].min()
|
90 |
+
)
|
91 |
+
# distance to 0MB memory
|
92 |
+
memory_distance = merged_df["forward.peak_memory(MB)"] / (
|
93 |
+
merged_df["forward.peak_memory(MB)"].max()
|
94 |
+
- merged_df["forward.peak_memory(MB)"].min()
|
95 |
+
)
|
96 |
+
# add perf distance
|
97 |
+
merged_df["perf_distance"] = (
|
98 |
+
score_distance**2 + latency_distance**2 + memory_distance**2
|
99 |
+
) ** 0.5
|
100 |
|
101 |
return merged_df
|
102 |
|
|
|
104 |
def get_benchmark_table(bench_df):
|
105 |
# add * to quantized models score
|
106 |
copy_df = bench_df.copy()
|
107 |
+
# add * to quantized models score since we can't garantee the score is the same
|
108 |
copy_df["best_score"] = copy_df.apply(
|
109 |
lambda x: f"{x['best_score']}**" if x["quantized"] else x["best_score"],
|
110 |
axis=1,
|
111 |
)
|
|
|
112 |
# sort
|
113 |
copy_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
|
114 |
# filter
|
|
|
116 |
# rename
|
117 |
copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
|
118 |
# transform
|
119 |
+
copy_df["LLM Type π€"] = copy_df["LLM Type π€"].apply(process_model_type)
|
120 |
copy_df["Best Scored Model π"] = copy_df["Best Scored Model π"].apply(
|
121 |
process_model_name
|
122 |
)
|
|
|
123 |
return copy_df
|
124 |
|
125 |
|
126 |
def get_benchmark_plot(bench_df):
|
127 |
fig = px.scatter(
|
128 |
bench_df,
|
|
|
129 |
y="best_score",
|
130 |
+
x="generate.throughput(tokens/s)",
|
131 |
+
size="generate.peak_memory(MB)",
|
132 |
color="model_type",
|
133 |
+
custom_data=list(ALL_COLUMNS_MAPPING.keys()),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
135 |
)
|
|
|
136 |
fig.update_layout(
|
137 |
title={
|
138 |
+
"text": "Model Score vs. Latency vs. Memory",
|
139 |
"y": 0.95,
|
140 |
"x": 0.5,
|
141 |
"xanchor": "center",
|
142 |
"yanchor": "top",
|
143 |
},
|
144 |
+
xaxis_title="Generation Throughput (tokens/s)",
|
145 |
yaxis_title="Open LLM Score (%)",
|
146 |
legend_title="Model Type",
|
147 |
width=1200,
|
148 |
height=600,
|
149 |
)
|
|
|
150 |
fig.update_traces(
|
151 |
hovertemplate="<br>".join(
|
152 |
[
|
153 |
+
f"<b>{ALL_COLUMNS_MAPPING[key]}:</b> %{{customdata[{i}]}}"
|
154 |
+
for i, key in enumerate(ALL_COLUMNS_MAPPING.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
]
|
156 |
)
|
157 |
)
|
|
|
158 |
return fig
|
159 |
|
160 |
|
|
|
164 |
datatypes,
|
165 |
optimizations,
|
166 |
score,
|
167 |
+
memory,
|
168 |
+
benchmark="Succeeded-1xA100-80GB",
|
169 |
):
|
170 |
raw_df = get_benchmark_df(benchmark=benchmark)
|
|
|
171 |
filtered_df = raw_df[
|
172 |
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
|
173 |
& raw_df["backend.name"].isin(backends)
|
|
|
184 |
else True
|
185 |
)
|
186 |
& (raw_df["best_score"] >= score)
|
187 |
+
& (raw_df["forward.peak_memory(MB)"] <= memory)
|
188 |
]
|
|
|
189 |
filtered_table = get_benchmark_table(filtered_df)
|
190 |
filtered_plot = get_benchmark_plot(filtered_df)
|
|
|
191 |
return filtered_table, filtered_plot
|
192 |
|
193 |
|
194 |
+
# Dataframes
|
195 |
+
A100_df = get_benchmark_df(benchmark="Succeeded-1xA100-80GB")
|
196 |
+
A100_table = get_benchmark_table(A100_df)
|
197 |
+
A100_plot = get_benchmark_plot(A100_df)
|
198 |
|
199 |
# Demo interface
|
200 |
demo = gr.Blocks(css=custom_css)
|
201 |
with demo:
|
202 |
# leaderboard title
|
203 |
gr.HTML(TITLE)
|
|
|
204 |
# introduction text
|
205 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
|
206 |
|
207 |
+
# leaderboard tabs
|
208 |
+
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
|
209 |
+
with gr.TabItem("π₯οΈ A100-80GB Benchmark π", id=0):
|
210 |
+
gr.HTML(
|
211 |
+
"π Scroll to the right π for more columns.", elem_id="descriptive-text"
|
212 |
+
)
|
213 |
+
# Original leaderboard table
|
214 |
+
A100_leaderboard = gr.components.Dataframe(
|
215 |
+
value=A100_table,
|
216 |
+
datatype=ALL_COLUMNS_DATATYPES,
|
217 |
+
headers=list(ALL_COLUMNS_MAPPING.values()),
|
218 |
+
elem_id="1xA100-table",
|
219 |
+
)
|
220 |
+
|
221 |
+
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
|
222 |
+
gr.HTML(
|
223 |
+
"π Hover over the points π for additional information.",
|
224 |
+
elem_id="descriptive-text",
|
225 |
+
)
|
226 |
+
# Original leaderboard plot
|
227 |
+
A100_plotly = gr.components.Plot(
|
228 |
+
value=A100_plot,
|
229 |
+
elem_id="1xA100-plot",
|
230 |
+
show_label=False,
|
231 |
+
)
|
232 |
+
|
233 |
+
with gr.TabItem("Control Panel ποΈ", id=2):
|
234 |
+
gr.HTML(
|
235 |
+
"Use this control panel to filter the leaderboard's table and plot.",
|
236 |
+
elem_id="descriptive-text",
|
237 |
+
)
|
238 |
+
# control panel interface
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column(scale=1):
|
241 |
+
search_bar = gr.Textbox(
|
242 |
+
label="Model π€",
|
243 |
+
info="π Search for a model name",
|
244 |
+
elem_id="search-bar",
|
245 |
+
)
|
246 |
+
with gr.Column(scale=1):
|
247 |
+
with gr.Box():
|
248 |
+
score_slider = gr.Slider(
|
249 |
+
label="Open LLM Score π",
|
250 |
+
info="ποΈ Slide to minimum Open LLM score",
|
251 |
+
value=0,
|
252 |
+
elem_id="threshold-slider",
|
253 |
+
)
|
254 |
+
with gr.Column(scale=1):
|
255 |
+
with gr.Box():
|
256 |
+
memory_slider = gr.Slider(
|
257 |
+
label="Peak Memory (MB) π",
|
258 |
+
info="ποΈ Slide to maximum Peak Memory",
|
259 |
+
minimum=0,
|
260 |
+
maximum=80 * 1024,
|
261 |
+
value=80 * 1024,
|
262 |
+
elem_id="memory-slider",
|
263 |
+
)
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column(scale=1):
|
267 |
+
backend_checkboxes = gr.CheckboxGroup(
|
268 |
+
label="Backends π",
|
269 |
+
choices=["pytorch", "onnxruntime"],
|
270 |
+
value=["pytorch", "onnxruntime"],
|
271 |
+
info="βοΈ Select the backends",
|
272 |
+
elem_id="backend-checkboxes",
|
273 |
+
)
|
274 |
+
with gr.Column(scale=1):
|
275 |
+
datatype_checkboxes = gr.CheckboxGroup(
|
276 |
+
label="Dtypes π₯",
|
277 |
+
choices=["float32", "float16"],
|
278 |
+
value=["float32", "float16"],
|
279 |
+
info="βοΈ Select the load dtypes",
|
280 |
+
elem_id="dtype-checkboxes",
|
281 |
+
)
|
282 |
+
with gr.Column(scale=2):
|
283 |
+
optimizations_checkboxes = gr.CheckboxGroup(
|
284 |
+
label="Optimizations π οΈ",
|
285 |
+
choices=["None", "BetterTransformer"],
|
286 |
+
value=["None", "BetterTransformer"],
|
287 |
+
info="βοΈ Select the optimizations",
|
288 |
+
elem_id="optimizations-checkboxes",
|
289 |
+
)
|
290 |
+
|
291 |
+
with gr.Row():
|
292 |
+
filter_button = gr.Button(
|
293 |
+
value="Filter π",
|
294 |
+
elem_id="filter-button",
|
295 |
+
)
|
296 |
+
|
297 |
+
with gr.TabItem("About π", id=3):
|
298 |
+
gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
|
299 |
+
gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text")
|
300 |
+
|
301 |
+
demo.load(
|
302 |
+
change_tab,
|
303 |
+
A100_tabs,
|
304 |
+
_js=custom_js,
|
305 |
)
|
306 |
|
307 |
+
filter_button.click(
|
308 |
+
filter_query,
|
309 |
+
[
|
310 |
+
search_bar,
|
311 |
+
backend_checkboxes,
|
312 |
+
datatype_checkboxes,
|
313 |
+
optimizations_checkboxes,
|
314 |
+
score_slider,
|
315 |
+
memory_slider,
|
316 |
+
],
|
317 |
+
[A100_leaderboard, A100_plotly],
|
318 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
with gr.Row():
|
321 |
+
with gr.Accordion("π Citation", open=False):
|
322 |
+
citation_button = gr.Textbox(
|
323 |
+
value=CITATION_BUTTON_TEXT,
|
324 |
+
label=CITATION_BUTTON_LABEL,
|
325 |
+
elem_id="citation-button",
|
326 |
+
).style(show_copy_button=True)
|
327 |
|
328 |
|
329 |
# Restart space every hour
|
src/utils.py
CHANGED
@@ -37,12 +37,15 @@ def load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN):
|
|
37 |
|
38 |
|
39 |
LLM_MODEL_TYPES = {
|
|
|
40 |
"gpt_bigcode": "GPT-BigCode πΈ",
|
41 |
"RefinedWebModel": "Falcon π¦
",
|
42 |
"RefinedWeb": "Falcon π¦
",
|
43 |
"baichuan": "Baichuan π",
|
44 |
"bloom": "Bloom πΈ",
|
45 |
"llama": "LLaMA π¦",
|
|
|
|
|
46 |
"gpt_neox": "GPT-NeoX",
|
47 |
"gpt_neo": "GPT-Neo",
|
48 |
"codegen": "CodeGen",
|
@@ -50,6 +53,8 @@ LLM_MODEL_TYPES = {
|
|
50 |
"gpt2": "GPT-2",
|
51 |
"gptj": "GPT-J",
|
52 |
"xglm": "XGLM",
|
|
|
|
|
53 |
"opt": "OPT",
|
54 |
"mpt": "MPT",
|
55 |
}
|
|
|
37 |
|
38 |
|
39 |
LLM_MODEL_TYPES = {
|
40 |
+
# branded ?
|
41 |
"gpt_bigcode": "GPT-BigCode πΈ",
|
42 |
"RefinedWebModel": "Falcon π¦
",
|
43 |
"RefinedWeb": "Falcon π¦
",
|
44 |
"baichuan": "Baichuan π",
|
45 |
"bloom": "Bloom πΈ",
|
46 |
"llama": "LLaMA π¦",
|
47 |
+
# unbranded ? suggest something
|
48 |
+
"stablelm_alpha": "StableLM-Alpha",
|
49 |
"gpt_neox": "GPT-NeoX",
|
50 |
"gpt_neo": "GPT-Neo",
|
51 |
"codegen": "CodeGen",
|
|
|
53 |
"gpt2": "GPT-2",
|
54 |
"gptj": "GPT-J",
|
55 |
"xglm": "XGLM",
|
56 |
+
"rwkv": "RWKV",
|
57 |
+
"bart": "BART",
|
58 |
"opt": "OPT",
|
59 |
"mpt": "MPT",
|
60 |
}
|