Spaces:
Running
Running
Commit
β’
7ecfa5a
1
Parent(s):
76b423c
fix
Browse files- src/control_panel.py +32 -32
- src/llm_perf.py +5 -5
src/control_panel.py
CHANGED
@@ -40,7 +40,7 @@ def create_control_panel(machine: str):
|
|
40 |
with gr.Row():
|
41 |
with gr.Column(scale=1, variant="panel"):
|
42 |
datatype_checkboxes = gr.CheckboxGroup(
|
43 |
-
label="
|
44 |
choices=["float32", "float16", "bfloat16"],
|
45 |
value=["float32", "float16", "bfloat16"],
|
46 |
info="βοΈ Select the load data types",
|
@@ -49,8 +49,8 @@ def create_control_panel(machine: str):
|
|
49 |
with gr.Column(scale=1, variant="panel"):
|
50 |
optimization_checkboxes = gr.CheckboxGroup(
|
51 |
label="Attentions ποΈ",
|
52 |
-
choices=["
|
53 |
-
value=["
|
54 |
info="βοΈ Select the optimization",
|
55 |
elem_id="optimization-checkboxes",
|
56 |
)
|
@@ -61,21 +61,15 @@ def create_control_panel(machine: str):
|
|
61 |
"None",
|
62 |
"BnB.4bit",
|
63 |
"BnB.8bit",
|
|
|
64 |
"GPTQ.4bit",
|
65 |
-
"GPTQ.4bit+ExllamaV1",
|
66 |
-
"GPTQ.4bit+ExllamaV2",
|
67 |
-
"AWQ.4bit+GEMM",
|
68 |
-
"AWQ.4bit+GEMV",
|
69 |
],
|
70 |
value=[
|
71 |
"None",
|
72 |
"BnB.4bit",
|
73 |
"BnB.8bit",
|
|
|
74 |
"GPTQ.4bit",
|
75 |
-
"GPTQ.4bit+ExllamaV1",
|
76 |
-
"GPTQ.4bit+ExllamaV2",
|
77 |
-
"AWQ.4bit+GEMM",
|
78 |
-
"AWQ.4bit+GEMV",
|
79 |
],
|
80 |
info="βοΈ Select the quantization schemes",
|
81 |
elem_id="quantization-checkboxes",
|
@@ -100,31 +94,35 @@ def create_control_panel(machine: str):
|
|
100 |
)
|
101 |
|
102 |
|
103 |
-
def
|
104 |
machine,
|
105 |
# inputs
|
106 |
score,
|
107 |
memory,
|
108 |
backends,
|
109 |
-
|
110 |
-
|
111 |
quantizations,
|
112 |
# interactive
|
113 |
columns,
|
114 |
search,
|
115 |
):
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
&
|
122 |
-
&
|
123 |
-
&
|
124 |
-
&
|
|
|
|
|
125 |
]
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
129 |
# filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
130 |
# filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
@@ -133,8 +131,8 @@ def filter_fn(
|
|
133 |
# filtered_quant_decode_fig = get_quant_decode_fig(filtered_df)
|
134 |
|
135 |
return [
|
136 |
-
|
137 |
-
|
138 |
# filtered_bt_prefill_fig,
|
139 |
# filtered_bt_decode_fig,
|
140 |
# filtered_fa2_prefill_fig,
|
@@ -170,7 +168,7 @@ def create_control_callback(
|
|
170 |
# quant_decode_plot,
|
171 |
):
|
172 |
filter_button.click(
|
173 |
-
fn=
|
174 |
inputs=[
|
175 |
# fixed
|
176 |
machine_textbox,
|
@@ -198,8 +196,10 @@ def create_control_callback(
|
|
198 |
)
|
199 |
|
200 |
|
201 |
-
def
|
202 |
-
llm_perf_df
|
|
|
|
|
203 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
204 |
selected_leaderboard_df = selected_leaderboard_df[
|
205 |
selected_leaderboard_df["Model π€"].str.contains(search, case=False)
|
@@ -219,12 +219,12 @@ def create_select_callback(
|
|
219 |
leaderboard_table,
|
220 |
):
|
221 |
columns_checkboxes.change(
|
222 |
-
fn=
|
223 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
224 |
outputs=[leaderboard_table],
|
225 |
)
|
226 |
search_bar.change(
|
227 |
-
fn=
|
228 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
229 |
outputs=[leaderboard_table],
|
230 |
)
|
|
|
40 |
with gr.Row():
|
41 |
with gr.Column(scale=1, variant="panel"):
|
42 |
datatype_checkboxes = gr.CheckboxGroup(
|
43 |
+
label="Precision π₯",
|
44 |
choices=["float32", "float16", "bfloat16"],
|
45 |
value=["float32", "float16", "bfloat16"],
|
46 |
info="βοΈ Select the load data types",
|
|
|
49 |
with gr.Column(scale=1, variant="panel"):
|
50 |
optimization_checkboxes = gr.CheckboxGroup(
|
51 |
label="Attentions ποΈ",
|
52 |
+
choices=["Eager", "SDPA", "FAv2"],
|
53 |
+
value=["Eager", "SDPA", "FAv2"],
|
54 |
info="βοΈ Select the optimization",
|
55 |
elem_id="optimization-checkboxes",
|
56 |
)
|
|
|
61 |
"None",
|
62 |
"BnB.4bit",
|
63 |
"BnB.8bit",
|
64 |
+
"AWQ.4bit",
|
65 |
"GPTQ.4bit",
|
|
|
|
|
|
|
|
|
66 |
],
|
67 |
value=[
|
68 |
"None",
|
69 |
"BnB.4bit",
|
70 |
"BnB.8bit",
|
71 |
+
"AWQ.4bit",
|
72 |
"GPTQ.4bit",
|
|
|
|
|
|
|
|
|
73 |
],
|
74 |
info="βοΈ Select the quantization schemes",
|
75 |
elem_id="quantization-checkboxes",
|
|
|
94 |
)
|
95 |
|
96 |
|
97 |
+
def filter_rows_fn(
|
98 |
machine,
|
99 |
# inputs
|
100 |
score,
|
101 |
memory,
|
102 |
backends,
|
103 |
+
precisions,
|
104 |
+
attentions,
|
105 |
quantizations,
|
106 |
# interactive
|
107 |
columns,
|
108 |
search,
|
109 |
):
|
110 |
+
llm_perf_df = get_llm_perf_df(machine=machine)
|
111 |
+
# print(attentions)
|
112 |
+
# print(llm_perf_df["Attention ποΈ"].unique())
|
113 |
+
filtered_llm_perf_df = llm_perf_df[
|
114 |
+
llm_perf_df["Model π€"].str.contains(search, case=False)
|
115 |
+
& llm_perf_df["Backend π"].isin(backends)
|
116 |
+
& llm_perf_df["Precision π₯"].isin(precisions)
|
117 |
+
& llm_perf_df["Attention ποΈ"].isin(attentions)
|
118 |
+
& llm_perf_df["Quantization ποΈ"].isin(quantizations)
|
119 |
+
& (llm_perf_df["Open LLM Score (%)"] >= score)
|
120 |
+
& (llm_perf_df["Memory (MB)"] <= memory)
|
121 |
]
|
122 |
+
selected_filtered_llm_perf_df = select_columns_fn(
|
123 |
+
machine, columns, search, filtered_llm_perf_df
|
124 |
+
)
|
125 |
+
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
126 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
127 |
# filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
128 |
# filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
|
|
131 |
# filtered_quant_decode_fig = get_quant_decode_fig(filtered_df)
|
132 |
|
133 |
return [
|
134 |
+
selected_filtered_llm_perf_df,
|
135 |
+
selected_filtered_lat_score_mem_fig,
|
136 |
# filtered_bt_prefill_fig,
|
137 |
# filtered_bt_decode_fig,
|
138 |
# filtered_fa2_prefill_fig,
|
|
|
168 |
# quant_decode_plot,
|
169 |
):
|
170 |
filter_button.click(
|
171 |
+
fn=filter_rows_fn,
|
172 |
inputs=[
|
173 |
# fixed
|
174 |
machine_textbox,
|
|
|
196 |
)
|
197 |
|
198 |
|
199 |
+
def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
200 |
+
if llm_perf_df is None:
|
201 |
+
llm_perf_df = get_llm_perf_df(machine=machine)
|
202 |
+
|
203 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
204 |
selected_leaderboard_df = selected_leaderboard_df[
|
205 |
selected_leaderboard_df["Model π€"].str.contains(search, case=False)
|
|
|
219 |
leaderboard_table,
|
220 |
):
|
221 |
columns_checkboxes.change(
|
222 |
+
fn=select_columns_fn,
|
223 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
224 |
outputs=[leaderboard_table],
|
225 |
)
|
226 |
search_bar.change(
|
227 |
+
fn=select_columns_fn,
|
228 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
229 |
outputs=[leaderboard_table],
|
230 |
)
|
src/llm_perf.py
CHANGED
@@ -36,19 +36,19 @@ def get_raw_llm_perf_df(machine: str = "1xA10"):
|
|
36 |
try:
|
37 |
dfs.append(
|
38 |
pd.read_csv(
|
39 |
-
f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/
|
40 |
)
|
41 |
)
|
42 |
except Exception:
|
43 |
print(f"Subset {subset} for machine {machine} not found")
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
"hf://datasets/optimum-benchmark/
|
48 |
)
|
49 |
|
50 |
llm_perf_df = pd.merge(
|
51 |
-
|
52 |
)
|
53 |
|
54 |
return llm_perf_df
|
|
|
36 |
try:
|
37 |
dfs.append(
|
38 |
pd.read_csv(
|
39 |
+
f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv"
|
40 |
)
|
41 |
)
|
42 |
except Exception:
|
43 |
print(f"Subset {subset} for machine {machine} not found")
|
44 |
|
45 |
+
perf_df = pd.concat(dfs)
|
46 |
+
llm_df = pd.read_csv(
|
47 |
+
"hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv"
|
48 |
)
|
49 |
|
50 |
llm_perf_df = pd.merge(
|
51 |
+
llm_df, perf_df, left_on="Model", right_on="config.backend.model"
|
52 |
)
|
53 |
|
54 |
return llm_perf_df
|