Spaces:
Sleeping
Sleeping
orionweller
commited on
Commit
•
0c3e233
1
Parent(s):
0a78f42
Upload find_splitting_words.py
Browse files- find_splitting_words.py +95 -0
find_splitting_words.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import pandas as pd
|
3 |
+
from nltk.corpus import stopwords
|
4 |
+
from nltk.stem import PorterStemmer
|
5 |
+
from nltk.tokenize import word_tokenize
|
6 |
+
from collections import Counter
|
7 |
+
import string
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Ensure you've downloaded the set of stop words the first time you run this
|
11 |
+
import nltk
|
12 |
+
nltk.download('punkt')
|
13 |
+
nltk.download('stopwords')
|
14 |
+
|
15 |
+
def preprocess_document(doc):
|
16 |
+
"""
|
17 |
+
Tokenizes, removes punctuation, stopwords, and stems words in a single document.
|
18 |
+
"""
|
19 |
+
# Lowercase
|
20 |
+
doc = doc.lower()
|
21 |
+
# Remove punctuation
|
22 |
+
doc = doc.translate(str.maketrans('', '', string.punctuation))
|
23 |
+
# Tokenize
|
24 |
+
tokens = word_tokenize(doc)
|
25 |
+
# Remove stop words
|
26 |
+
stop_words = set(stopwords.words('english'))
|
27 |
+
filtered_tokens = [word for word in tokens if word not in stop_words]
|
28 |
+
# Stemming
|
29 |
+
stemmer = PorterStemmer()
|
30 |
+
stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
|
31 |
+
return stemmed_tokens
|
32 |
+
|
33 |
+
def find_dividing_words(documents):
|
34 |
+
"""
|
35 |
+
Identifies candidate words that might split the set of documents into two groups.
|
36 |
+
"""
|
37 |
+
all_words = []
|
38 |
+
per_doc_word_counts = []
|
39 |
+
|
40 |
+
for doc in documents:
|
41 |
+
preprocessed_doc = preprocess_document(doc)
|
42 |
+
all_words.extend(preprocessed_doc)
|
43 |
+
per_doc_word_counts.append(Counter(preprocessed_doc))
|
44 |
+
|
45 |
+
# Overall word frequency
|
46 |
+
overall_word_counts = Counter(all_words)
|
47 |
+
|
48 |
+
# Find words that appear in roughly half the documents
|
49 |
+
num_docs = len(documents)
|
50 |
+
candidate_words = []
|
51 |
+
for word, count in overall_word_counts.items():
|
52 |
+
doc_frequency = sum(1 for doc_count in per_doc_word_counts if doc_count[word] > 0)
|
53 |
+
if 0.3 * num_docs <= doc_frequency <= 0.7 * num_docs:
|
54 |
+
candidate_words.append(word)
|
55 |
+
|
56 |
+
return candidate_words
|
57 |
+
|
58 |
+
|
59 |
+
def make_contents(doc):
|
60 |
+
"""
|
61 |
+
Returns the contents of a document as a single string.
|
62 |
+
"""
|
63 |
+
if "title" in doc and "contents" in doc:
|
64 |
+
return doc["title"] + " " + doc["contents"]
|
65 |
+
if "headline" in doc and "text" in doc:
|
66 |
+
return doc["headline"] + " " + doc["text"]
|
67 |
+
if "title" in doc and "text" in doc:
|
68 |
+
return doc["title"] + " " + doc["text"]
|
69 |
+
if "contents" in doc:
|
70 |
+
return doc["contents"]
|
71 |
+
if "text" in doc:
|
72 |
+
return doc["text"]
|
73 |
+
|
74 |
+
|
75 |
+
def main(args):
|
76 |
+
# read in the qrels and docs file from the `args.dataset` directory for the `.relevant_only` files
|
77 |
+
base_dir = os.path.join("data", args.dataset)
|
78 |
+
qrels = pd.read_csv(os.path.join(base_dir, "qrels.relevant_only.trec"), sep="\t", header=None, names=["qid", "docid", "rel"])
|
79 |
+
docs = pd.read_json(os.path.join(base_dir, "docs.relevant_only.jsonl"), lines=True)
|
80 |
+
|
81 |
+
for qid in qrels.groupby("qid").groups.keys():
|
82 |
+
# get the relevant documents for the current query
|
83 |
+
relevant_docids = qrels[qrels["qid"] == qid]["docid"].tolist()
|
84 |
+
# get the text for the relevant documents
|
85 |
+
relevant_docs_text = docs[docs["doc_id"].isin(relevant_docids)].apply(lambda x: make_contents(x), axis=1).tolist()
|
86 |
+
splitting_words = find_dividing_words(relevant_docs_text)
|
87 |
+
|
88 |
+
breakpoint()
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
parser = argparse.ArgumentParser(description='Find words that might split the set of documents into two groups.')
|
93 |
+
parser.add_argument('dataset', type=str, help='The dataset to use (e.g. "robust04")')
|
94 |
+
args = parser.parse_args()
|
95 |
+
main(args)
|