import streamlit as st import os import pathlib import pandas as pd from collections import defaultdict import json import copy import re import tqdm import plotly.express as px import pandas as pd from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize from collections import Counter import string import os import streamlit as st # Ensure you've downloaded the set of stop words the first time you run this import nltk # only download if they don't exist # if not os.path.exists(os.path.join(nltk.data.find('corpora'), 'stopwords')): nltk.download('punkt') nltk.download('stopwords') from dataset_loading import load_local_qrels, load_local_corpus, load_local_queries def preprocess_document(doc): """ Tokenizes, removes punctuation, stopwords, and stems words in a single document. """ # Lowercase doc = doc.lower() # Remove punctuation doc = doc.translate(str.maketrans('', '', string.punctuation)) # Tokenize tokens = word_tokenize(doc) # Remove stop words stop_words = set(stopwords.words('english')) filtered_tokens = [word for word in tokens if word not in stop_words] # Stemming stemmer = PorterStemmer() stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens] return stemmed_tokens @st.cache_data def find_dividing_words(documents): """ Identifies candidate words that might split the set of documents into two groups. """ all_words = [] per_doc_word_counts = [] i = 0 for doc in documents: print(i) preprocessed_doc = preprocess_document(doc) all_words.extend(preprocessed_doc) per_doc_word_counts.append(Counter(preprocessed_doc)) i += 1 # Overall word frequency overall_word_counts = Counter(all_words) # Find words that appear in roughly half the documents num_docs = len(documents) candidate_words = [] for word, count in overall_word_counts.items(): doc_frequency = sum(1 for doc_count in per_doc_word_counts if doc_count[word] > 0) if 0.35 * num_docs <= doc_frequency <= 0.75 * num_docs: candidate_words.append(word) print("Done with dividing words") return candidate_words os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" st.set_page_config(layout="wide") current_checkboxes = [] query_input = None @st.cache_data def convert_df(df): # IMPORTANT: Cache the conversion to prevent computation on every rerun return df.to_csv(path_or_buf=None, index=False, quotechar='"').encode('utf-8') def create_histogram_relevant_docs(relevant_df): # turn results into a dataframe and then plot fig = px.histogram(relevant_df, x="relevant_docs") # make it fit in one column fig.update_layout( height=400, width=250 ) return fig def get_current_data(): cur_query_data = [] cur_query = query_input.replace("\n", "\\n") for doc_id, checkbox in current_checkboxes: if checkbox: cur_query_data.append({ "new_narrative": cur_query, "qid": st.session_state.selectbox_instance, "doc_id": doc_id, "is_relevant": 0 }) # return the data as a CSV pandas return convert_df(pd.DataFrame(cur_query_data)) @st.cache_data def escape_markdown(text): # List of characters to escape # Adding backslash to the list of special characters to escape itself as well text = text.replace("``", "\"") text = text.replace("$", "\$") special_chars = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '#', '+', '-', '.', '!', '|', "$"] # Escaping each special character escaped_text = "".join(f"\\{char}" if char in special_chars else char for char in text) return escaped_text @st.cache_data def highlight_text(text, splitting_words): # remove anything that will mess up markdown text = escape_markdown(text) changed = False if not len(splitting_words): return text, changed def replace_function(match): return f'{match.group(0)}' # Compile a single regular expression pattern for all splitting words pattern = '|'.join([re.escape(word) for word in splitting_words]) # Perform case-insensitive replacement new_text, num_subs = re.subn(pattern, replace_function, text, flags=re.IGNORECASE) if num_subs > 0: changed = True return new_text, changed if 'cur_instance_num' not in st.session_state: st.session_state.cur_instance_num = -1 def validate(config_option, file_loaded): if config_option != "None" and file_loaded is None: st.error("Please upload a file for " + config_option) st.stop() with st.sidebar: st.title("Options") st.header("Upload corpus") corpus_file = st.file_uploader("Choose a file", key="corpus") corpus = load_local_corpus(corpus_file) st.header("Upload queries") queries_file = st.file_uploader("Choose a file", key="queries") queries = load_local_queries(queries_file) st.header("Upload qrels") qrels_file = st.file_uploader("Choose a file", key="qrels") qrels = load_local_qrels(qrels_file) # add a checkbox to turn off highlighting st.header("Highlighting Off") highlighting_off = st.checkbox("Turn off highlighting", key="highlighting_off") # add a checkbox to turn off word suggestions st.header("Word Suggestions Off") word_suggestions_off = st.checkbox("Turn off word suggestions", key="word_suggestions_off") # use only Qrels with relevance 2 st.header("Use only Qrels with relevance 2") use_only_relevance_2 = st.checkbox("Use only Qrels with relevance 2", key="use_only_relevance_2") ## make sure all qids in qrels are in queries and write out a warning if not if queries is not None and qrels is not None: missing_qids = set(qrels.keys()) - set(queries.keys()) | set(queries.keys()) - set(qrels.keys()) if len(missing_qids) > 0: st.warning(f"The following qids in qrels are not in queries and will be deleted: {missing_qids}") # remove them from qrels and queries for qid in missing_qids: if qid in qrels: del qrels[qid] if qid in queries: del queries[qid] if use_only_relevance_2: # remove all qrels that are not relevance 2 for qid, doc_rels in qrels.items(): qrels[qid] = {docid: rel for docid, rel in doc_rels.items() if rel == 2} # remove all queries that have no qrels queries = {qid: text for qid, text in queries.items() if qid in qrels} data = [] for key, value in qrels.items(): data.append({"relevant_docs": len(value), "qid": key}) relevant_df = pd.DataFrame(data) z = st.header("Analysis Options") # sliderbar of how many Top N to choose n_relevant_docs = st.slider("Number of relevant docs", 1, 999, 100) col1, col2 = st.columns([1, 3], gap="large") if corpus is not None and queries is not None and qrels is not None: with st.sidebar: st.success("All files uploaded") with col1: # breakpoint() qids_with_less = relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].qid.tolist() set_of_cols = set(qrels.keys()).intersection(set(qids_with_less)) container_for_nav = st.container() name_of_columns = sorted([item for item in set_of_cols]) instances_to_use = name_of_columns st.title("Instances") def sync_from_drop(): if st.session_state.selectbox_instance == "Overview": st.session_state.number_of_col = -1 st.session_state.cur_instance_num = -1 else: index_of_obj = name_of_columns.index(st.session_state.selectbox_instance) # print("Index of obj: ", index_of_obj, type(index_of_obj)) st.session_state.number_of_col = index_of_obj st.session_state.cur_instance_num = index_of_obj def sync_from_number(): st.session_state.cur_instance_num = st.session_state.number_of_col # print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col)) if st.session_state.number_of_col == -1: st.session_state.selectbox_instance = "Overview" else: st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col] number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col") selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance") st.divider() # make pie plot showing how many relevant docs there are per query histogram st.header("Relevant Docs Per Query") plotly_chart = create_histogram_relevant_docs(relevant_df) st.plotly_chart(plotly_chart) st.divider() # now show the number with relevant docs less than `n_relevant_docs` st.header("Relevant Docs Less Than {}:".format(n_relevant_docs)) st.subheader(f'{relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].shape[0]} Queries') st.markdown(",".join(relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].qid.tolist())) with col2: # get instance number inst_index = number_of_col if inst_index >= 0: inst_num = instances_to_use[inst_index] st.markdown("

Editor

", unsafe_allow_html=True) container = st.container() container.divider() container.subheader(f"Query") query_text = queries[str(inst_num)].strip() query_input = container.text_area(f"QID: {inst_num}", query_text) container.divider() ## Documents # relevant relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs] doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs] if word_suggestions_off: splitting_words = [] else: together_docs = [item[1] + " " + item[2] if type(item[1]) == str else item[2] for item in doc_texts] splitting_words = find_dividing_words(together_docs) # make a selectbox of these splitting words (allow multiple) container.subheader("Splitting Words") container.text("Select words that are relevant to the query") splitting_word_select = container.multiselect("Splitting Words", splitting_words, key="splitting_words") container.divider() current_checkboxes = [] total_changed = 0 highlighted_texts = [] highlighted_titles = [] for (docid, title, text) in tqdm.tqdm(doc_texts): if not len(splitting_word_select) or highlighting_off: highlighted_texts.append(text) highlighted_titles.append(title) continue highlighted_text, changed_text = highlight_text(text, splitting_word_select) highlighted_title, changed_title = highlight_text(title, splitting_word_select) highlighted_titles.append(highlighted_title) highlighted_texts.append(highlighted_text) total_changed += int(int(changed_text) or int(changed_title)) container.subheader(f"Relevant Documents ({len(list(qrels[str(inst_num)].keys()))})") container.subheader(f"Total have these words: {total_changed}") container.divider() for i, (docid, title, text) in enumerate(doc_texts): container.markdown(f"## {docid}: relevance: {qrels[str(inst_num)][docid]}") container.markdown(f"#### {highlighted_titles[i]}", True) container.markdown(f"\n{highlighted_texts[i]}", True) current_checkboxes.append((docid, container.checkbox(f'{docid} is Non-Relevant', key=docid))) container.divider() if st.checkbox("Download data as CSV"): st.download_button( label="Download data as CSV", data=get_current_data(), file_name=f'annotation_query_{inst_num}.csv', mime='text/csv', ) # none checked elif inst_index < 0: st.title("Overview") else: st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")