os1187's picture
Update app.py
3c4450e verified
import streamlit as st
import yfinance as yf
import pandas as pd
@st.experimental_singleton
def get_sp500_list():
table = pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies')
return table[0]['Symbol'].tolist()
def load_sp500_averages(filepath):
return pd.read_csv(filepath, header=0, names=['Ratio', 'Average']).set_index('Ratio')
def fetch_stock_data(ticker_symbol):
ticker = yf.Ticker(ticker_symbol)
info = ticker.info
financials = {
'P/E Ratio': info.get('forwardPE'),
'P/B Ratio': info.get('priceToBook'),
'P/S Ratio': info.get('priceToSalesTrailing12Months'),
'Debt to Equity Ratio': info.get('debtToEquity'),
'Return on Equity': info.get('returnOnEquity'),
'Book-to-Market Ratio': 1 / info.get('priceToBook') if info.get('priceToBook') else None
}
# Debug: Print to see if financials are fetched correctly
print(f"Financials for {ticker_symbol}: {financials}")
return financials, info
def compare_to_index(stock_ratios, index_averages):
comparison = {}
score = 0
for ratio, value in stock_ratios.items():
if ratio in index_averages.index and pd.notna(value):
average = index_averages.loc[ratio, 'Average']
comparison[ratio] = 'Undervalued' if value < average else 'Overvalued'
score += 1 if value < average else -1
return comparison, score
def calculate_combined_scores_for_stocks(stocks, index_averages):
scores = []
for ticker_symbol in stocks:
stock_data, _ = fetch_stock_data(ticker_symbol)
comparison, score = compare_to_index(stock_data, index_averages)
scores.append({'Stock': ticker_symbol, 'Combined Score': score})
return pd.DataFrame(scores)
def color_combined_score(value):
if value > 0:
color = 'green'
elif value < 0:
color = 'red'
else:
color = 'lightgrey'
return f'background-color: {color};'
def filter_incomplete_stocks(df, required_columns):
# Ensure all required columns exist in the DataFrame
for column in required_columns:
if column not in df.columns:
df[column] = pd.NA
return df.dropna(subset=required_columns)
st.title('S&P 500 Stock Comparison Tool')
sp500_list = get_sp500_list()
sp500_averages = load_sp500_averages('sp500_averages.csv')
scores_df = calculate_combined_scores_for_stocks(sp500_list, sp500_averages)
# Debug: Print the DataFrame before filtering to see its content
print("Scores DataFrame before filtering:", scores_df.head())
required_columns = ['P/E Ratio', 'P/B Ratio', 'P/S Ratio', 'Debt to Equity Ratio', 'Return on Equity', 'Book-to-Market Ratio']
# Attempt a lenient filtering approach or skip filtering to debug
# scores_df_filtered = filter_incomplete_stocks(scores_df, required_columns)
scores_df_filtered = scores_df # Temporarily bypass filtering to debug
scores_df_sorted = scores_df_filtered.sort_values(by='Combined Score', ascending=False)
# Debug: Print the DataFrame after sorting to see if it's empty
print("Scores DataFrame after sorting:", scores_df_sorted.head())
col1, col2 = st.columns([3, 5])
with col1:
st.subheader("Stock Overview")
if not scores_df_sorted.empty:
styled_scores_df = scores_df_sorted.style.applymap(color_combined_score, subset=['Combined Score'])
st.dataframe(styled_scores_df)
else:
st.write("No data available after filtering.")
with col2:
st.subheader("Stock Details")
if not scores_df_sorted.empty:
sorted_tickers = scores_df_sorted['Stock'].tolist()
ticker_symbol = st.selectbox('Select a stock for details', options=sorted_tickers)
if ticker_symbol:
with st.spinner(f'Fetching data for {ticker_symbol}...'):
stock_data, info = fetch_stock_data(ticker_symbol)
comparison, _ = compare_to_index(stock_data, sp500_averages)
st.write(f"**{info.get('longName', 'N/A')}** ({ticker_symbol})")
st.write(info.get('longBusinessSummary', 'N/A'))
for ratio in required_columns:
value = stock_data.get(ratio, 'N/A')
average = sp500_averages.loc[ratio, 'Average'] if ratio in sp500_averages.index else 'N/A'
status = comparison.get(ratio, 'N/A')
st.write(f"{ratio}: {value} (Your Ratio) | {average} (S&P 500 Avg) - {status}")
else:
st.write("No stocks to display.")