File size: 5,609 Bytes
df2e20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from transformers import pipeline
import io, base64
from PIL import Image
import numpy as np
import tensorflow as tf
import mediapy
import os
import sys
from huggingface_hub import snapshot_download

# 1. GPT-J: Story Generation Pipeline
story_gen = pipeline("text-generation", "pranavpsv/gpt2-genre-story-generator")

# 2. LatentDiffusion: Latent Diffusion Interface
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion")

# 3. FILM: Frame Interpolation Model (code re-use from spaces/akhaliq/frame-interpolation/tree/main)
os.system("git clone https://github.com/google-research/frame-interpolation")
sys.path.append("frame-interpolation")
from eval import interpolator, util

ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)

model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style")
interpolator = interpolator.Interpolator(model, None)

def generate_story(choice, input_text):
    query = "<BOS> <{0}> {1}".format(choice, input_text)
    
    print(query)
    generated_text = story_gen(query)
    generated_text = generated_text[0]['generated_text']
    generated_text = generated_text.split('> ')[2]
    
    return generated_text
    
def generate_images(generated_text):
    steps=50
    width=256
    height=256
    num_images=4
    diversity=6
    image_bytes = image_gen(generated_text, steps, width, height, num_images, diversity)
    
    # Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
    generated_images = []
    for image in image_bytes[1]:
        image_str = image[0]
        image_str = image_str.replace("data:image/png;base64,","")
        decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
        img = Image.open(io.BytesIO(decoded_bytes))
        generated_images.append(img)
        
    return generated_images
    
def generate_interpolation(gallery):
    times_to_interpolate = 4
    
    generated_images = []
    for image_str in gallery:
        image_str = image_str.replace("data:image/png;base64,","")
        decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8"))
        img = Image.open(io.BytesIO(decoded_bytes))
        generated_images.append(img)
    
    generated_images[0].save('frame_0.png')
    generated_images[1].save('frame_1.png')
    generated_images[2].save('frame_2.png')
    generated_images[3].save('frame_3.png')
    
    input_frames = ["frame_0.png", "frame_1.png", "frame_2.png", "frame_3.png"]

    frames = list(util.interpolate_recursively_from_files(input_frames, times_to_interpolate, interpolator))

    mediapy.write_video("out.mp4", frames, fps=15)
    
    return "out.mp4"
    
    

demo = gr.Blocks()

with demo:
    with gr.Row():
    
        # Left column (inputs)
        with gr.Column():
            input_story_type = gr.Radio(choices=['superhero', 'action', 'drama', 'horror', 'thriller', 'sci_fi'], value='sci_fi', label="Genre")
            input_start_text = gr.Textbox(placeholder='A teddy bear outer space', label="Starting Text")
            
            gr.Markdown("Be sure to run each of the buttons one at a time, they depend on each others' outputs!")
            
            # Rows of instructions & buttons
            with gr.Row():
                gr.Markdown("1. Select a type of story, then write some starting text! Then hit the 'Generate Story' button to generate a story! Feel free to edit the generated story afterwards!")
                button_gen_story = gr.Button("Generate Story")
            with gr.Row():
                gr.Markdown("2. After generating a story, hit the 'Generate Images' button to create some visuals for your story! (Can re-run multiple times!)")
                button_gen_images = gr.Button("Generate Images")
            with gr.Row():
                gr.Markdown("3. After generating some images, hit the 'Generate Video' button to create a short video by interpolating the previously generated visuals!")
                button_gen_video = gr.Button("Generate Video")
                
            # Rows of references
            with gr.Row():
                gr.Markdown("--Models Used--")
            with gr.Row():
                gr.Markdown("Story Generation: [GPT-J](https://huggingface.co/pranavpsv/gpt2-genre-story-generator)")
            with gr.Row():
                gr.Markdown("Image Generation Conditioned on Text: [Latent Diffusion](https://huggingface.co/spaces/multimodalart/latentdiffusion) | [Github Repo](https://github.com/CompVis/latent-diffusion)")
            with gr.Row():
                gr.Markdown("Interpolations: [FILM](https://huggingface.co/spaces/akhaliq/frame-interpolation) | [Github Repo](https://github.com/google-research/frame-interpolation)")
            with gr.Row():
                gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_story_and_video_generation)")
                
        # Right column (outputs)
        with gr.Column():
            output_generated_story = gr.Textbox(label="Generated Story")
            output_gallery = gr.Gallery(label="Generated Story Images")
            output_interpolation = gr.Video(label="Generated Video")
            
    # Bind functions to buttons
    button_gen_story.click(fn=generate_story, inputs=[input_story_type , input_start_text], outputs=output_generated_story)
    button_gen_images.click(fn=generate_images, inputs=output_generated_story, outputs=output_gallery)
    button_gen_video.click(fn=generate_interpolation, inputs=output_gallery, outputs=output_interpolation)

demo.launch(debug=True, enable_queue=True)