import gradio as gr # create nnunet input types # run nnunet # export def predict(img): return "cat" demo = gr.Interface( fn=predict, inputs=gr.File(file_count="single", file_types=[".mha", ".nii.gz", ".nii"]), # outputs=( # gr.File() # ) # , outputs=gr.Label(num_top_classes=3), ) demo.launch(server_name="0.0.0.0", server_port=7860)