Delete tools/accommodations/test.ipynb
Browse files- tools/accommodations/test.ipynb +0 -2037
tools/accommodations/test.ipynb
DELETED
@@ -1,2037 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"id": "ad7592e7",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stderr",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"/tmp/ipykernel_2459435/230780042.py:2: DtypeWarning: Columns (25) have mixed types. Specify dtype option on import or set low_memory=False.\n",
|
14 |
-
" data = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/Airbnb_Open_Data.csv')\n"
|
15 |
-
]
|
16 |
-
}
|
17 |
-
],
|
18 |
-
"source": [
|
19 |
-
"import pandas as pd\n",
|
20 |
-
"data = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/Airbnb_Open_Data.csv')"
|
21 |
-
]
|
22 |
-
},
|
23 |
-
{
|
24 |
-
"cell_type": "code",
|
25 |
-
"execution_count": 2,
|
26 |
-
"id": "f97916a9",
|
27 |
-
"metadata": {},
|
28 |
-
"outputs": [
|
29 |
-
{
|
30 |
-
"data": {
|
31 |
-
"text/html": [
|
32 |
-
"<div>\n",
|
33 |
-
"<style scoped>\n",
|
34 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
35 |
-
" vertical-align: middle;\n",
|
36 |
-
" }\n",
|
37 |
-
"\n",
|
38 |
-
" .dataframe tbody tr th {\n",
|
39 |
-
" vertical-align: top;\n",
|
40 |
-
" }\n",
|
41 |
-
"\n",
|
42 |
-
" .dataframe thead th {\n",
|
43 |
-
" text-align: right;\n",
|
44 |
-
" }\n",
|
45 |
-
"</style>\n",
|
46 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
47 |
-
" <thead>\n",
|
48 |
-
" <tr style=\"text-align: right;\">\n",
|
49 |
-
" <th></th>\n",
|
50 |
-
" <th>id</th>\n",
|
51 |
-
" <th>NAME</th>\n",
|
52 |
-
" <th>host id</th>\n",
|
53 |
-
" <th>host_identity_verified</th>\n",
|
54 |
-
" <th>host name</th>\n",
|
55 |
-
" <th>neighbourhood group</th>\n",
|
56 |
-
" <th>neighbourhood</th>\n",
|
57 |
-
" <th>lat</th>\n",
|
58 |
-
" <th>long</th>\n",
|
59 |
-
" <th>country</th>\n",
|
60 |
-
" <th>...</th>\n",
|
61 |
-
" <th>service fee</th>\n",
|
62 |
-
" <th>minimum nights</th>\n",
|
63 |
-
" <th>number of reviews</th>\n",
|
64 |
-
" <th>last review</th>\n",
|
65 |
-
" <th>reviews per month</th>\n",
|
66 |
-
" <th>review rate number</th>\n",
|
67 |
-
" <th>calculated host listings count</th>\n",
|
68 |
-
" <th>availability 365</th>\n",
|
69 |
-
" <th>house_rules</th>\n",
|
70 |
-
" <th>license</th>\n",
|
71 |
-
" </tr>\n",
|
72 |
-
" </thead>\n",
|
73 |
-
" <tbody>\n",
|
74 |
-
" <tr>\n",
|
75 |
-
" <th>0</th>\n",
|
76 |
-
" <td>1001254</td>\n",
|
77 |
-
" <td>Clean & quiet apt home by the park</td>\n",
|
78 |
-
" <td>80014485718</td>\n",
|
79 |
-
" <td>unconfirmed</td>\n",
|
80 |
-
" <td>Madaline</td>\n",
|
81 |
-
" <td>Brooklyn</td>\n",
|
82 |
-
" <td>Kensington</td>\n",
|
83 |
-
" <td>40.64749</td>\n",
|
84 |
-
" <td>-73.97237</td>\n",
|
85 |
-
" <td>United States</td>\n",
|
86 |
-
" <td>...</td>\n",
|
87 |
-
" <td>$193</td>\n",
|
88 |
-
" <td>10.0</td>\n",
|
89 |
-
" <td>9.0</td>\n",
|
90 |
-
" <td>10/19/2021</td>\n",
|
91 |
-
" <td>0.21</td>\n",
|
92 |
-
" <td>4.0</td>\n",
|
93 |
-
" <td>6.0</td>\n",
|
94 |
-
" <td>286.0</td>\n",
|
95 |
-
" <td>Clean up and treat the home the way you'd like...</td>\n",
|
96 |
-
" <td>NaN</td>\n",
|
97 |
-
" </tr>\n",
|
98 |
-
" <tr>\n",
|
99 |
-
" <th>1</th>\n",
|
100 |
-
" <td>1002102</td>\n",
|
101 |
-
" <td>Skylit Midtown Castle</td>\n",
|
102 |
-
" <td>52335172823</td>\n",
|
103 |
-
" <td>verified</td>\n",
|
104 |
-
" <td>Jenna</td>\n",
|
105 |
-
" <td>Manhattan</td>\n",
|
106 |
-
" <td>Midtown</td>\n",
|
107 |
-
" <td>40.75362</td>\n",
|
108 |
-
" <td>-73.98377</td>\n",
|
109 |
-
" <td>United States</td>\n",
|
110 |
-
" <td>...</td>\n",
|
111 |
-
" <td>$28</td>\n",
|
112 |
-
" <td>30.0</td>\n",
|
113 |
-
" <td>45.0</td>\n",
|
114 |
-
" <td>5/21/2022</td>\n",
|
115 |
-
" <td>0.38</td>\n",
|
116 |
-
" <td>4.0</td>\n",
|
117 |
-
" <td>2.0</td>\n",
|
118 |
-
" <td>228.0</td>\n",
|
119 |
-
" <td>Pet friendly but please confirm with me if the...</td>\n",
|
120 |
-
" <td>NaN</td>\n",
|
121 |
-
" </tr>\n",
|
122 |
-
" <tr>\n",
|
123 |
-
" <th>2</th>\n",
|
124 |
-
" <td>1002403</td>\n",
|
125 |
-
" <td>THE VILLAGE OF HARLEM....NEW YORK !</td>\n",
|
126 |
-
" <td>78829239556</td>\n",
|
127 |
-
" <td>NaN</td>\n",
|
128 |
-
" <td>Elise</td>\n",
|
129 |
-
" <td>Manhattan</td>\n",
|
130 |
-
" <td>Harlem</td>\n",
|
131 |
-
" <td>40.80902</td>\n",
|
132 |
-
" <td>-73.94190</td>\n",
|
133 |
-
" <td>United States</td>\n",
|
134 |
-
" <td>...</td>\n",
|
135 |
-
" <td>$124</td>\n",
|
136 |
-
" <td>3.0</td>\n",
|
137 |
-
" <td>0.0</td>\n",
|
138 |
-
" <td>NaN</td>\n",
|
139 |
-
" <td>NaN</td>\n",
|
140 |
-
" <td>5.0</td>\n",
|
141 |
-
" <td>1.0</td>\n",
|
142 |
-
" <td>352.0</td>\n",
|
143 |
-
" <td>I encourage you to use my kitchen, cooking and...</td>\n",
|
144 |
-
" <td>NaN</td>\n",
|
145 |
-
" </tr>\n",
|
146 |
-
" <tr>\n",
|
147 |
-
" <th>3</th>\n",
|
148 |
-
" <td>1002755</td>\n",
|
149 |
-
" <td>NaN</td>\n",
|
150 |
-
" <td>85098326012</td>\n",
|
151 |
-
" <td>unconfirmed</td>\n",
|
152 |
-
" <td>Garry</td>\n",
|
153 |
-
" <td>Brooklyn</td>\n",
|
154 |
-
" <td>Clinton Hill</td>\n",
|
155 |
-
" <td>40.68514</td>\n",
|
156 |
-
" <td>-73.95976</td>\n",
|
157 |
-
" <td>United States</td>\n",
|
158 |
-
" <td>...</td>\n",
|
159 |
-
" <td>$74</td>\n",
|
160 |
-
" <td>30.0</td>\n",
|
161 |
-
" <td>270.0</td>\n",
|
162 |
-
" <td>7/5/2019</td>\n",
|
163 |
-
" <td>4.64</td>\n",
|
164 |
-
" <td>4.0</td>\n",
|
165 |
-
" <td>1.0</td>\n",
|
166 |
-
" <td>322.0</td>\n",
|
167 |
-
" <td>NaN</td>\n",
|
168 |
-
" <td>NaN</td>\n",
|
169 |
-
" </tr>\n",
|
170 |
-
" <tr>\n",
|
171 |
-
" <th>4</th>\n",
|
172 |
-
" <td>1003689</td>\n",
|
173 |
-
" <td>Entire Apt: Spacious Studio/Loft by central park</td>\n",
|
174 |
-
" <td>92037596077</td>\n",
|
175 |
-
" <td>verified</td>\n",
|
176 |
-
" <td>Lyndon</td>\n",
|
177 |
-
" <td>Manhattan</td>\n",
|
178 |
-
" <td>East Harlem</td>\n",
|
179 |
-
" <td>40.79851</td>\n",
|
180 |
-
" <td>-73.94399</td>\n",
|
181 |
-
" <td>United States</td>\n",
|
182 |
-
" <td>...</td>\n",
|
183 |
-
" <td>$41</td>\n",
|
184 |
-
" <td>10.0</td>\n",
|
185 |
-
" <td>9.0</td>\n",
|
186 |
-
" <td>11/19/2018</td>\n",
|
187 |
-
" <td>0.10</td>\n",
|
188 |
-
" <td>3.0</td>\n",
|
189 |
-
" <td>1.0</td>\n",
|
190 |
-
" <td>289.0</td>\n",
|
191 |
-
" <td>Please no smoking in the house, porch or on th...</td>\n",
|
192 |
-
" <td>NaN</td>\n",
|
193 |
-
" </tr>\n",
|
194 |
-
" <tr>\n",
|
195 |
-
" <th>...</th>\n",
|
196 |
-
" <td>...</td>\n",
|
197 |
-
" <td>...</td>\n",
|
198 |
-
" <td>...</td>\n",
|
199 |
-
" <td>...</td>\n",
|
200 |
-
" <td>...</td>\n",
|
201 |
-
" <td>...</td>\n",
|
202 |
-
" <td>...</td>\n",
|
203 |
-
" <td>...</td>\n",
|
204 |
-
" <td>...</td>\n",
|
205 |
-
" <td>...</td>\n",
|
206 |
-
" <td>...</td>\n",
|
207 |
-
" <td>...</td>\n",
|
208 |
-
" <td>...</td>\n",
|
209 |
-
" <td>...</td>\n",
|
210 |
-
" <td>...</td>\n",
|
211 |
-
" <td>...</td>\n",
|
212 |
-
" <td>...</td>\n",
|
213 |
-
" <td>...</td>\n",
|
214 |
-
" <td>...</td>\n",
|
215 |
-
" <td>...</td>\n",
|
216 |
-
" <td>...</td>\n",
|
217 |
-
" </tr>\n",
|
218 |
-
" <tr>\n",
|
219 |
-
" <th>102594</th>\n",
|
220 |
-
" <td>6092437</td>\n",
|
221 |
-
" <td>Spare room in Williamsburg</td>\n",
|
222 |
-
" <td>12312296767</td>\n",
|
223 |
-
" <td>verified</td>\n",
|
224 |
-
" <td>Krik</td>\n",
|
225 |
-
" <td>Brooklyn</td>\n",
|
226 |
-
" <td>Williamsburg</td>\n",
|
227 |
-
" <td>40.70862</td>\n",
|
228 |
-
" <td>-73.94651</td>\n",
|
229 |
-
" <td>United States</td>\n",
|
230 |
-
" <td>...</td>\n",
|
231 |
-
" <td>$169</td>\n",
|
232 |
-
" <td>1.0</td>\n",
|
233 |
-
" <td>0.0</td>\n",
|
234 |
-
" <td>NaN</td>\n",
|
235 |
-
" <td>NaN</td>\n",
|
236 |
-
" <td>3.0</td>\n",
|
237 |
-
" <td>1.0</td>\n",
|
238 |
-
" <td>227.0</td>\n",
|
239 |
-
" <td>No Smoking No Parties or Events of any kind Pl...</td>\n",
|
240 |
-
" <td>NaN</td>\n",
|
241 |
-
" </tr>\n",
|
242 |
-
" <tr>\n",
|
243 |
-
" <th>102595</th>\n",
|
244 |
-
" <td>6092990</td>\n",
|
245 |
-
" <td>Best Location near Columbia U</td>\n",
|
246 |
-
" <td>77864383453</td>\n",
|
247 |
-
" <td>unconfirmed</td>\n",
|
248 |
-
" <td>Mifan</td>\n",
|
249 |
-
" <td>Manhattan</td>\n",
|
250 |
-
" <td>Morningside Heights</td>\n",
|
251 |
-
" <td>40.80460</td>\n",
|
252 |
-
" <td>-73.96545</td>\n",
|
253 |
-
" <td>United States</td>\n",
|
254 |
-
" <td>...</td>\n",
|
255 |
-
" <td>$167</td>\n",
|
256 |
-
" <td>1.0</td>\n",
|
257 |
-
" <td>1.0</td>\n",
|
258 |
-
" <td>7/6/2015</td>\n",
|
259 |
-
" <td>0.02</td>\n",
|
260 |
-
" <td>2.0</td>\n",
|
261 |
-
" <td>2.0</td>\n",
|
262 |
-
" <td>395.0</td>\n",
|
263 |
-
" <td>House rules: Guests agree to the following ter...</td>\n",
|
264 |
-
" <td>NaN</td>\n",
|
265 |
-
" </tr>\n",
|
266 |
-
" <tr>\n",
|
267 |
-
" <th>102596</th>\n",
|
268 |
-
" <td>6093542</td>\n",
|
269 |
-
" <td>Comfy, bright room in Brooklyn</td>\n",
|
270 |
-
" <td>69050334417</td>\n",
|
271 |
-
" <td>unconfirmed</td>\n",
|
272 |
-
" <td>Megan</td>\n",
|
273 |
-
" <td>Brooklyn</td>\n",
|
274 |
-
" <td>Park Slope</td>\n",
|
275 |
-
" <td>40.67505</td>\n",
|
276 |
-
" <td>-73.98045</td>\n",
|
277 |
-
" <td>United States</td>\n",
|
278 |
-
" <td>...</td>\n",
|
279 |
-
" <td>$198</td>\n",
|
280 |
-
" <td>3.0</td>\n",
|
281 |
-
" <td>0.0</td>\n",
|
282 |
-
" <td>NaN</td>\n",
|
283 |
-
" <td>NaN</td>\n",
|
284 |
-
" <td>5.0</td>\n",
|
285 |
-
" <td>1.0</td>\n",
|
286 |
-
" <td>342.0</td>\n",
|
287 |
-
" <td>NaN</td>\n",
|
288 |
-
" <td>NaN</td>\n",
|
289 |
-
" </tr>\n",
|
290 |
-
" <tr>\n",
|
291 |
-
" <th>102597</th>\n",
|
292 |
-
" <td>6094094</td>\n",
|
293 |
-
" <td>Big Studio-One Stop from Midtown</td>\n",
|
294 |
-
" <td>11160591270</td>\n",
|
295 |
-
" <td>unconfirmed</td>\n",
|
296 |
-
" <td>Christopher</td>\n",
|
297 |
-
" <td>Queens</td>\n",
|
298 |
-
" <td>Long Island City</td>\n",
|
299 |
-
" <td>40.74989</td>\n",
|
300 |
-
" <td>-73.93777</td>\n",
|
301 |
-
" <td>United States</td>\n",
|
302 |
-
" <td>...</td>\n",
|
303 |
-
" <td>$109</td>\n",
|
304 |
-
" <td>2.0</td>\n",
|
305 |
-
" <td>5.0</td>\n",
|
306 |
-
" <td>10/11/2015</td>\n",
|
307 |
-
" <td>0.10</td>\n",
|
308 |
-
" <td>3.0</td>\n",
|
309 |
-
" <td>1.0</td>\n",
|
310 |
-
" <td>386.0</td>\n",
|
311 |
-
" <td>NaN</td>\n",
|
312 |
-
" <td>NaN</td>\n",
|
313 |
-
" </tr>\n",
|
314 |
-
" <tr>\n",
|
315 |
-
" <th>102598</th>\n",
|
316 |
-
" <td>6094647</td>\n",
|
317 |
-
" <td>585 sf Luxury Studio</td>\n",
|
318 |
-
" <td>68170633372</td>\n",
|
319 |
-
" <td>unconfirmed</td>\n",
|
320 |
-
" <td>Rebecca</td>\n",
|
321 |
-
" <td>Manhattan</td>\n",
|
322 |
-
" <td>Upper West Side</td>\n",
|
323 |
-
" <td>40.76807</td>\n",
|
324 |
-
" <td>-73.98342</td>\n",
|
325 |
-
" <td>United States</td>\n",
|
326 |
-
" <td>...</td>\n",
|
327 |
-
" <td>$206</td>\n",
|
328 |
-
" <td>1.0</td>\n",
|
329 |
-
" <td>0.0</td>\n",
|
330 |
-
" <td>NaN</td>\n",
|
331 |
-
" <td>NaN</td>\n",
|
332 |
-
" <td>3.0</td>\n",
|
333 |
-
" <td>1.0</td>\n",
|
334 |
-
" <td>69.0</td>\n",
|
335 |
-
" <td>NaN</td>\n",
|
336 |
-
" <td>NaN</td>\n",
|
337 |
-
" </tr>\n",
|
338 |
-
" </tbody>\n",
|
339 |
-
"</table>\n",
|
340 |
-
"<p>102599 rows × 26 columns</p>\n",
|
341 |
-
"</div>"
|
342 |
-
],
|
343 |
-
"text/plain": [
|
344 |
-
" id NAME \n",
|
345 |
-
"0 1001254 Clean & quiet apt home by the park \\\n",
|
346 |
-
"1 1002102 Skylit Midtown Castle \n",
|
347 |
-
"2 1002403 THE VILLAGE OF HARLEM....NEW YORK ! \n",
|
348 |
-
"3 1002755 NaN \n",
|
349 |
-
"4 1003689 Entire Apt: Spacious Studio/Loft by central park \n",
|
350 |
-
"... ... ... \n",
|
351 |
-
"102594 6092437 Spare room in Williamsburg \n",
|
352 |
-
"102595 6092990 Best Location near Columbia U \n",
|
353 |
-
"102596 6093542 Comfy, bright room in Brooklyn \n",
|
354 |
-
"102597 6094094 Big Studio-One Stop from Midtown \n",
|
355 |
-
"102598 6094647 585 sf Luxury Studio \n",
|
356 |
-
"\n",
|
357 |
-
" host id host_identity_verified host name neighbourhood group \n",
|
358 |
-
"0 80014485718 unconfirmed Madaline Brooklyn \\\n",
|
359 |
-
"1 52335172823 verified Jenna Manhattan \n",
|
360 |
-
"2 78829239556 NaN Elise Manhattan \n",
|
361 |
-
"3 85098326012 unconfirmed Garry Brooklyn \n",
|
362 |
-
"4 92037596077 verified Lyndon Manhattan \n",
|
363 |
-
"... ... ... ... ... \n",
|
364 |
-
"102594 12312296767 verified Krik Brooklyn \n",
|
365 |
-
"102595 77864383453 unconfirmed Mifan Manhattan \n",
|
366 |
-
"102596 69050334417 unconfirmed Megan Brooklyn \n",
|
367 |
-
"102597 11160591270 unconfirmed Christopher Queens \n",
|
368 |
-
"102598 68170633372 unconfirmed Rebecca Manhattan \n",
|
369 |
-
"\n",
|
370 |
-
" neighbourhood lat long country ... \n",
|
371 |
-
"0 Kensington 40.64749 -73.97237 United States ... \\\n",
|
372 |
-
"1 Midtown 40.75362 -73.98377 United States ... \n",
|
373 |
-
"2 Harlem 40.80902 -73.94190 United States ... \n",
|
374 |
-
"3 Clinton Hill 40.68514 -73.95976 United States ... \n",
|
375 |
-
"4 East Harlem 40.79851 -73.94399 United States ... \n",
|
376 |
-
"... ... ... ... ... ... \n",
|
377 |
-
"102594 Williamsburg 40.70862 -73.94651 United States ... \n",
|
378 |
-
"102595 Morningside Heights 40.80460 -73.96545 United States ... \n",
|
379 |
-
"102596 Park Slope 40.67505 -73.98045 United States ... \n",
|
380 |
-
"102597 Long Island City 40.74989 -73.93777 United States ... \n",
|
381 |
-
"102598 Upper West Side 40.76807 -73.98342 United States ... \n",
|
382 |
-
"\n",
|
383 |
-
" service fee minimum nights number of reviews last review \n",
|
384 |
-
"0 $193 10.0 9.0 10/19/2021 \\\n",
|
385 |
-
"1 $28 30.0 45.0 5/21/2022 \n",
|
386 |
-
"2 $124 3.0 0.0 NaN \n",
|
387 |
-
"3 $74 30.0 270.0 7/5/2019 \n",
|
388 |
-
"4 $41 10.0 9.0 11/19/2018 \n",
|
389 |
-
"... ... ... ... ... \n",
|
390 |
-
"102594 $169 1.0 0.0 NaN \n",
|
391 |
-
"102595 $167 1.0 1.0 7/6/2015 \n",
|
392 |
-
"102596 $198 3.0 0.0 NaN \n",
|
393 |
-
"102597 $109 2.0 5.0 10/11/2015 \n",
|
394 |
-
"102598 $206 1.0 0.0 NaN \n",
|
395 |
-
"\n",
|
396 |
-
" reviews per month review rate number calculated host listings count \n",
|
397 |
-
"0 0.21 4.0 6.0 \\\n",
|
398 |
-
"1 0.38 4.0 2.0 \n",
|
399 |
-
"2 NaN 5.0 1.0 \n",
|
400 |
-
"3 4.64 4.0 1.0 \n",
|
401 |
-
"4 0.10 3.0 1.0 \n",
|
402 |
-
"... ... ... ... \n",
|
403 |
-
"102594 NaN 3.0 1.0 \n",
|
404 |
-
"102595 0.02 2.0 2.0 \n",
|
405 |
-
"102596 NaN 5.0 1.0 \n",
|
406 |
-
"102597 0.10 3.0 1.0 \n",
|
407 |
-
"102598 NaN 3.0 1.0 \n",
|
408 |
-
"\n",
|
409 |
-
" availability 365 house_rules \n",
|
410 |
-
"0 286.0 Clean up and treat the home the way you'd like... \\\n",
|
411 |
-
"1 228.0 Pet friendly but please confirm with me if the... \n",
|
412 |
-
"2 352.0 I encourage you to use my kitchen, cooking and... \n",
|
413 |
-
"3 322.0 NaN \n",
|
414 |
-
"4 289.0 Please no smoking in the house, porch or on th... \n",
|
415 |
-
"... ... ... \n",
|
416 |
-
"102594 227.0 No Smoking No Parties or Events of any kind Pl... \n",
|
417 |
-
"102595 395.0 House rules: Guests agree to the following ter... \n",
|
418 |
-
"102596 342.0 NaN \n",
|
419 |
-
"102597 386.0 NaN \n",
|
420 |
-
"102598 69.0 NaN \n",
|
421 |
-
"\n",
|
422 |
-
" license \n",
|
423 |
-
"0 NaN \n",
|
424 |
-
"1 NaN \n",
|
425 |
-
"2 NaN \n",
|
426 |
-
"3 NaN \n",
|
427 |
-
"4 NaN \n",
|
428 |
-
"... ... \n",
|
429 |
-
"102594 NaN \n",
|
430 |
-
"102595 NaN \n",
|
431 |
-
"102596 NaN \n",
|
432 |
-
"102597 NaN \n",
|
433 |
-
"102598 NaN \n",
|
434 |
-
"\n",
|
435 |
-
"[102599 rows x 26 columns]"
|
436 |
-
]
|
437 |
-
},
|
438 |
-
"execution_count": 2,
|
439 |
-
"metadata": {},
|
440 |
-
"output_type": "execute_result"
|
441 |
-
}
|
442 |
-
],
|
443 |
-
"source": [
|
444 |
-
"data"
|
445 |
-
]
|
446 |
-
},
|
447 |
-
{
|
448 |
-
"cell_type": "code",
|
449 |
-
"execution_count": 3,
|
450 |
-
"id": "e21af5d1",
|
451 |
-
"metadata": {},
|
452 |
-
"outputs": [],
|
453 |
-
"source": [
|
454 |
-
"flight = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/flights/clean_Flights_2022.csv')"
|
455 |
-
]
|
456 |
-
},
|
457 |
-
{
|
458 |
-
"cell_type": "code",
|
459 |
-
"execution_count": 4,
|
460 |
-
"id": "966feef9",
|
461 |
-
"metadata": {},
|
462 |
-
"outputs": [],
|
463 |
-
"source": [
|
464 |
-
"flight = flight.to_dict(orient = 'split')"
|
465 |
-
]
|
466 |
-
},
|
467 |
-
{
|
468 |
-
"cell_type": "code",
|
469 |
-
"execution_count": 5,
|
470 |
-
"id": "3f4fe062",
|
471 |
-
"metadata": {},
|
472 |
-
"outputs": [],
|
473 |
-
"source": [
|
474 |
-
"data_dict = data.to_dict(orient = 'split')"
|
475 |
-
]
|
476 |
-
},
|
477 |
-
{
|
478 |
-
"cell_type": "code",
|
479 |
-
"execution_count": 6,
|
480 |
-
"id": "33213ac0",
|
481 |
-
"metadata": {},
|
482 |
-
"outputs": [
|
483 |
-
{
|
484 |
-
"data": {
|
485 |
-
"text/plain": [
|
486 |
-
"[2, '2022-04-04', '15:14', '16:36', 251.0, 'Durango', 'Denver', 100]"
|
487 |
-
]
|
488 |
-
},
|
489 |
-
"execution_count": 6,
|
490 |
-
"metadata": {},
|
491 |
-
"output_type": "execute_result"
|
492 |
-
}
|
493 |
-
],
|
494 |
-
"source": [
|
495 |
-
"flight['data'][2]"
|
496 |
-
]
|
497 |
-
},
|
498 |
-
{
|
499 |
-
"cell_type": "code",
|
500 |
-
"execution_count": 8,
|
501 |
-
"id": "9cef6161",
|
502 |
-
"metadata": {},
|
503 |
-
"outputs": [
|
504 |
-
{
|
505 |
-
"name": "stdout",
|
506 |
-
"output_type": "stream",
|
507 |
-
"text": [
|
508 |
-
"nan\n"
|
509 |
-
]
|
510 |
-
}
|
511 |
-
],
|
512 |
-
"source": [
|
513 |
-
"print(str(data_dict['data'][3][24]))"
|
514 |
-
]
|
515 |
-
},
|
516 |
-
{
|
517 |
-
"cell_type": "code",
|
518 |
-
"execution_count": 9,
|
519 |
-
"id": "c5f81f43",
|
520 |
-
"metadata": {},
|
521 |
-
"outputs": [],
|
522 |
-
"source": [
|
523 |
-
"city_set = set()\n",
|
524 |
-
"cnt = 0\n",
|
525 |
-
"for unit in data_dict['data']:\n",
|
526 |
-
" if str(unit[24]) != 'nan':\n",
|
527 |
-
" cnt += 1"
|
528 |
-
]
|
529 |
-
},
|
530 |
-
{
|
531 |
-
"cell_type": "code",
|
532 |
-
"execution_count": 10,
|
533 |
-
"id": "533a5aa6",
|
534 |
-
"metadata": {},
|
535 |
-
"outputs": [
|
536 |
-
{
|
537 |
-
"data": {
|
538 |
-
"text/plain": [
|
539 |
-
"50468"
|
540 |
-
]
|
541 |
-
},
|
542 |
-
"execution_count": 10,
|
543 |
-
"metadata": {},
|
544 |
-
"output_type": "execute_result"
|
545 |
-
}
|
546 |
-
],
|
547 |
-
"source": [
|
548 |
-
"cnt"
|
549 |
-
]
|
550 |
-
},
|
551 |
-
{
|
552 |
-
"cell_type": "code",
|
553 |
-
"execution_count": 11,
|
554 |
-
"id": "bfce5f56",
|
555 |
-
"metadata": {},
|
556 |
-
"outputs": [
|
557 |
-
{
|
558 |
-
"data": {
|
559 |
-
"text/plain": [
|
560 |
-
"set()"
|
561 |
-
]
|
562 |
-
},
|
563 |
-
"execution_count": 11,
|
564 |
-
"metadata": {},
|
565 |
-
"output_type": "execute_result"
|
566 |
-
}
|
567 |
-
],
|
568 |
-
"source": [
|
569 |
-
"city_set"
|
570 |
-
]
|
571 |
-
},
|
572 |
-
{
|
573 |
-
"cell_type": "code",
|
574 |
-
"execution_count": 12,
|
575 |
-
"id": "230b760c",
|
576 |
-
"metadata": {},
|
577 |
-
"outputs": [
|
578 |
-
{
|
579 |
-
"ename": "ValueError",
|
580 |
-
"evalue": "Sample larger than population or is negative",
|
581 |
-
"output_type": "error",
|
582 |
-
"traceback": [
|
583 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
584 |
-
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
585 |
-
"Cell \u001b[0;32mIn[12], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mrandom\u001b[39;00m\n\u001b[1;32m 2\u001b[0m city_set \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(city_set)\n\u001b[0;32m----> 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcity_set\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m)\n",
|
586 |
-
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/random.py:449\u001b[0m, in \u001b[0;36mRandom.sample\u001b[0;34m(self, population, k, counts)\u001b[0m\n\u001b[1;32m 447\u001b[0m randbelow \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_randbelow\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;241m0\u001b[39m \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m k \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m n:\n\u001b[0;32m--> 449\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSample larger than population or is negative\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 450\u001b[0m result \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;01mNone\u001b[39;00m] \u001b[38;5;241m*\u001b[39m k\n\u001b[1;32m 451\u001b[0m setsize \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m21\u001b[39m \u001b[38;5;66;03m# size of a small set minus size of an empty list\u001b[39;00m\n",
|
587 |
-
"\u001b[0;31mValueError\u001b[0m: Sample larger than population or is negative"
|
588 |
-
]
|
589 |
-
}
|
590 |
-
],
|
591 |
-
"source": [
|
592 |
-
"import random\n",
|
593 |
-
"city_set = list(city_set)\n",
|
594 |
-
"print(random.sample(city_set,1))"
|
595 |
-
]
|
596 |
-
},
|
597 |
-
{
|
598 |
-
"cell_type": "code",
|
599 |
-
"execution_count": 12,
|
600 |
-
"id": "61eddd5f",
|
601 |
-
"metadata": {},
|
602 |
-
"outputs": [
|
603 |
-
{
|
604 |
-
"ename": "AttributeError",
|
605 |
-
"evalue": "'dict' object has no attribute 'to_dict'",
|
606 |
-
"output_type": "error",
|
607 |
-
"traceback": [
|
608 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
609 |
-
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
610 |
-
"Cell \u001b[0;32mIn[12], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m data_dict \u001b[38;5;241m=\u001b[39m \u001b[43mdata\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_dict\u001b[49m(orient \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msplit\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
|
611 |
-
"\u001b[0;31mAttributeError\u001b[0m: 'dict' object has no attribute 'to_dict'"
|
612 |
-
]
|
613 |
-
}
|
614 |
-
],
|
615 |
-
"source": [
|
616 |
-
"data_dict = data.to_dict(orient = 'split')"
|
617 |
-
]
|
618 |
-
},
|
619 |
-
{
|
620 |
-
"cell_type": "code",
|
621 |
-
"execution_count": 35,
|
622 |
-
"id": "3292c450",
|
623 |
-
"metadata": {},
|
624 |
-
"outputs": [
|
625 |
-
{
|
626 |
-
"data": {
|
627 |
-
"text/plain": [
|
628 |
-
"['Unnamed: 0',\n",
|
629 |
-
" 'NAME',\n",
|
630 |
-
" 'room type',\n",
|
631 |
-
" 'price',\n",
|
632 |
-
" 'minimum nights',\n",
|
633 |
-
" 'review rate number',\n",
|
634 |
-
" 'house_rules',\n",
|
635 |
-
" 'maximum occupancy',\n",
|
636 |
-
" 'city']"
|
637 |
-
]
|
638 |
-
},
|
639 |
-
"execution_count": 35,
|
640 |
-
"metadata": {},
|
641 |
-
"output_type": "execute_result"
|
642 |
-
}
|
643 |
-
],
|
644 |
-
"source": [
|
645 |
-
"data_dict['columns']"
|
646 |
-
]
|
647 |
-
},
|
648 |
-
{
|
649 |
-
"cell_type": "code",
|
650 |
-
"execution_count": 38,
|
651 |
-
"id": "cfaa21d9",
|
652 |
-
"metadata": {},
|
653 |
-
"outputs": [
|
654 |
-
{
|
655 |
-
"data": {
|
656 |
-
"text/plain": [
|
657 |
-
"5047"
|
658 |
-
]
|
659 |
-
},
|
660 |
-
"execution_count": 38,
|
661 |
-
"metadata": {},
|
662 |
-
"output_type": "execute_result"
|
663 |
-
}
|
664 |
-
],
|
665 |
-
"source": [
|
666 |
-
"len(data_dict['data'])"
|
667 |
-
]
|
668 |
-
},
|
669 |
-
{
|
670 |
-
"cell_type": "code",
|
671 |
-
"execution_count": 36,
|
672 |
-
"id": "2980362d",
|
673 |
-
"metadata": {},
|
674 |
-
"outputs": [],
|
675 |
-
"source": [
|
676 |
-
"type_set = set()\n",
|
677 |
-
"for unit in data_dict['data']:\n",
|
678 |
-
" type_set.add(unit[2])"
|
679 |
-
]
|
680 |
-
},
|
681 |
-
{
|
682 |
-
"cell_type": "code",
|
683 |
-
"execution_count": 37,
|
684 |
-
"id": "f5e36fbb",
|
685 |
-
"metadata": {},
|
686 |
-
"outputs": [
|
687 |
-
{
|
688 |
-
"data": {
|
689 |
-
"text/plain": [
|
690 |
-
"{'Entire home/apt', 'Private room', 'Shared room'}"
|
691 |
-
]
|
692 |
-
},
|
693 |
-
"execution_count": 37,
|
694 |
-
"metadata": {},
|
695 |
-
"output_type": "execute_result"
|
696 |
-
}
|
697 |
-
],
|
698 |
-
"source": [
|
699 |
-
"type_set"
|
700 |
-
]
|
701 |
-
},
|
702 |
-
{
|
703 |
-
"cell_type": "code",
|
704 |
-
"execution_count": 15,
|
705 |
-
"id": "bf1231c4",
|
706 |
-
"metadata": {},
|
707 |
-
"outputs": [
|
708 |
-
{
|
709 |
-
"ename": "NameError",
|
710 |
-
"evalue": "name 'data_dict' is not defined",
|
711 |
-
"output_type": "error",
|
712 |
-
"traceback": [
|
713 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
714 |
-
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
715 |
-
"Cell \u001b[0;32mIn[15], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mdata_dict\u001b[49m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdata\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;241m147\u001b[39m]\n",
|
716 |
-
"\u001b[0;31mNameError\u001b[0m: name 'data_dict' is not defined"
|
717 |
-
]
|
718 |
-
}
|
719 |
-
],
|
720 |
-
"source": [
|
721 |
-
"data_dict['data'][147]"
|
722 |
-
]
|
723 |
-
},
|
724 |
-
{
|
725 |
-
"cell_type": "code",
|
726 |
-
"execution_count": 14,
|
727 |
-
"id": "f993b894",
|
728 |
-
"metadata": {},
|
729 |
-
"outputs": [
|
730 |
-
{
|
731 |
-
"data": {
|
732 |
-
"text/plain": [
|
733 |
-
"set()"
|
734 |
-
]
|
735 |
-
},
|
736 |
-
"execution_count": 14,
|
737 |
-
"metadata": {},
|
738 |
-
"output_type": "execute_result"
|
739 |
-
}
|
740 |
-
],
|
741 |
-
"source": [
|
742 |
-
"type_set"
|
743 |
-
]
|
744 |
-
},
|
745 |
-
{
|
746 |
-
"cell_type": "code",
|
747 |
-
"execution_count": 10,
|
748 |
-
"id": "916e9470",
|
749 |
-
"metadata": {},
|
750 |
-
"outputs": [
|
751 |
-
{
|
752 |
-
"name": "stdout",
|
753 |
-
"output_type": "stream",
|
754 |
-
"text": [
|
755 |
-
"1 NAME\n",
|
756 |
-
"7 lat\n",
|
757 |
-
"8 long\n",
|
758 |
-
"13 room type\n",
|
759 |
-
"15 price\n",
|
760 |
-
"17 minimum nights\n",
|
761 |
-
"21 review rate number\n",
|
762 |
-
"24 house_rules\n"
|
763 |
-
]
|
764 |
-
}
|
765 |
-
],
|
766 |
-
"source": [
|
767 |
-
"for idx, unit in enumerate(data_dict['columns']):\n",
|
768 |
-
" if unit in ['NAME','lat', 'long', 'room type', 'price','minimum nights','review rate number','house_rules']:\n",
|
769 |
-
" print(idx,unit)"
|
770 |
-
]
|
771 |
-
},
|
772 |
-
{
|
773 |
-
"cell_type": "code",
|
774 |
-
"execution_count": 73,
|
775 |
-
"id": "1213484d",
|
776 |
-
"metadata": {},
|
777 |
-
"outputs": [
|
778 |
-
{
|
779 |
-
"data": {
|
780 |
-
"application/vnd.jupyter.widget-view+json": {
|
781 |
-
"model_id": "51764c1a3739416289913ec613816cc7",
|
782 |
-
"version_major": 2,
|
783 |
-
"version_minor": 0
|
784 |
-
},
|
785 |
-
"text/plain": [
|
786 |
-
"0it [00:00, ?it/s]"
|
787 |
-
]
|
788 |
-
},
|
789 |
-
"metadata": {},
|
790 |
-
"output_type": "display_data"
|
791 |
-
},
|
792 |
-
{
|
793 |
-
"name": "stderr",
|
794 |
-
"output_type": "stream",
|
795 |
-
"text": [
|
796 |
-
"/tmp/ipykernel_3241846/557604333.py:23: DeprecationWarning: Sampling from a set deprecated\n",
|
797 |
-
"since Python 3.9 and will be removed in a subsequent version.\n",
|
798 |
-
" tmp_dict[\"city\"] = random.sample(city_set,1)[0]\n"
|
799 |
-
]
|
800 |
-
},
|
801 |
-
{
|
802 |
-
"ename": "ValueError",
|
803 |
-
"evalue": "Sample larger than population or is negative",
|
804 |
-
"output_type": "error",
|
805 |
-
"traceback": [
|
806 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
807 |
-
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
808 |
-
"Cell \u001b[0;32mIn[73], line 23\u001b[0m\n\u001b[1;32m 21\u001b[0m tmp_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreview rate number\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m unit[\u001b[38;5;241m21\u001b[39m]\n\u001b[1;32m 22\u001b[0m tmp_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhouse_rules\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m unit[\u001b[38;5;241m24\u001b[39m]\n\u001b[0;32m---> 23\u001b[0m tmp_dict[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcity\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcity_set\u001b[49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 24\u001b[0m new_data\u001b[38;5;241m.\u001b[39mappend(tmp_dict)\n",
|
809 |
-
"File \u001b[0;32m~/miniconda3/envs/py39/lib/python3.9/random.py:449\u001b[0m, in \u001b[0;36mRandom.sample\u001b[0;34m(self, population, k, counts)\u001b[0m\n\u001b[1;32m 447\u001b[0m randbelow \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_randbelow\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;241m0\u001b[39m \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m k \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m n:\n\u001b[0;32m--> 449\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSample larger than population or is negative\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 450\u001b[0m result \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;01mNone\u001b[39;00m] \u001b[38;5;241m*\u001b[39m k\n\u001b[1;32m 451\u001b[0m setsize \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m21\u001b[39m \u001b[38;5;66;03m# size of a small set minus size of an empty list\u001b[39;00m\n",
|
810 |
-
"\u001b[0;31mValueError\u001b[0m: Sample larger than population or is negative"
|
811 |
-
]
|
812 |
-
}
|
813 |
-
],
|
814 |
-
"source": [
|
815 |
-
"from tqdm.autonotebook import tqdm\n",
|
816 |
-
"import random\n",
|
817 |
-
"new_data = []\n",
|
818 |
-
"for idx, unit in tqdm(enumerate(data_dict['data'])):\n",
|
819 |
-
" tmp_dict = {k:\"\" for k in ['NAME','room type', 'price','minimum nights','review rate number','house_rules']}\n",
|
820 |
-
" tmp_dict[\"NAME\"] = unit[1]\n",
|
821 |
-
" tmp_dict[\"room type\"] = unit[13]\n",
|
822 |
-
" if unit[13] == \"Shared room\":\n",
|
823 |
-
" tmp_dict[\"maximum occupancy\"] = 1\n",
|
824 |
-
" elif unit[13] == \"Hotel room\":\n",
|
825 |
-
" tmp_dict[\"maximum occupancy\"] = random.randint(1, 2)\n",
|
826 |
-
" elif unit[13] == \"Private room\":\n",
|
827 |
-
" tmp_dict[\"maximum occupancy\"] = random.randint(1, 2)\n",
|
828 |
-
" elif unit[13] == \"Entire home/apt\":\n",
|
829 |
-
" try:\n",
|
830 |
-
" tmp_dict[\"maximum occupancy\"] = random.randint(2, max(3,eval(unit[15].replace(\"$\",\"\").replace(\",\",\"\"))//100))\n",
|
831 |
-
" except:\n",
|
832 |
-
" tmp_dict[\"maximum occupancy\"] = random.randint(2, max(3,unit[15]//100))\n",
|
833 |
-
" tmp_dict[\"price\"] = unit[15].replace(\"$\",\"\").replace(\",\",\"\")\n",
|
834 |
-
" tmp_dict[\"minimum nights\"] = unit[17]\n",
|
835 |
-
" tmp_dict[\"review rate number\"] = unit[21]\n",
|
836 |
-
" tmp_dict[\"house_rules\"] = unit[24]\n",
|
837 |
-
" tmp_dict[\"city\"] = random.sample(city_set,1)[0]\n",
|
838 |
-
" new_data.append(tmp_dict)"
|
839 |
-
]
|
840 |
-
},
|
841 |
-
{
|
842 |
-
"cell_type": "code",
|
843 |
-
"execution_count": 20,
|
844 |
-
"id": "fd3e8257",
|
845 |
-
"metadata": {},
|
846 |
-
"outputs": [
|
847 |
-
{
|
848 |
-
"data": {
|
849 |
-
"text/plain": [
|
850 |
-
"102599"
|
851 |
-
]
|
852 |
-
},
|
853 |
-
"execution_count": 20,
|
854 |
-
"metadata": {},
|
855 |
-
"output_type": "execute_result"
|
856 |
-
}
|
857 |
-
],
|
858 |
-
"source": [
|
859 |
-
"len(new_data)"
|
860 |
-
]
|
861 |
-
},
|
862 |
-
{
|
863 |
-
"cell_type": "code",
|
864 |
-
"execution_count": 21,
|
865 |
-
"id": "bfb243c0",
|
866 |
-
"metadata": {},
|
867 |
-
"outputs": [],
|
868 |
-
"source": [
|
869 |
-
"df = pd.DataFrame(new_data)"
|
870 |
-
]
|
871 |
-
},
|
872 |
-
{
|
873 |
-
"cell_type": "code",
|
874 |
-
"execution_count": 23,
|
875 |
-
"id": "af7e3411",
|
876 |
-
"metadata": {},
|
877 |
-
"outputs": [],
|
878 |
-
"source": [
|
879 |
-
"df.to_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/clean_hotels_2022.csv')"
|
880 |
-
]
|
881 |
-
},
|
882 |
-
{
|
883 |
-
"cell_type": "code",
|
884 |
-
"execution_count": 22,
|
885 |
-
"id": "71d21fea",
|
886 |
-
"metadata": {},
|
887 |
-
"outputs": [
|
888 |
-
{
|
889 |
-
"data": {
|
890 |
-
"text/html": [
|
891 |
-
"<div>\n",
|
892 |
-
"<style scoped>\n",
|
893 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
894 |
-
" vertical-align: middle;\n",
|
895 |
-
" }\n",
|
896 |
-
"\n",
|
897 |
-
" .dataframe tbody tr th {\n",
|
898 |
-
" vertical-align: top;\n",
|
899 |
-
" }\n",
|
900 |
-
"\n",
|
901 |
-
" .dataframe thead th {\n",
|
902 |
-
" text-align: right;\n",
|
903 |
-
" }\n",
|
904 |
-
"</style>\n",
|
905 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
906 |
-
" <thead>\n",
|
907 |
-
" <tr style=\"text-align: right;\">\n",
|
908 |
-
" <th></th>\n",
|
909 |
-
" <th>NAME</th>\n",
|
910 |
-
" <th>room type</th>\n",
|
911 |
-
" <th>price</th>\n",
|
912 |
-
" <th>minimum nights</th>\n",
|
913 |
-
" <th>review rate number</th>\n",
|
914 |
-
" <th>house_rules</th>\n",
|
915 |
-
" <th>maximum occupancy</th>\n",
|
916 |
-
" <th>city</th>\n",
|
917 |
-
" </tr>\n",
|
918 |
-
" </thead>\n",
|
919 |
-
" <tbody>\n",
|
920 |
-
" <tr>\n",
|
921 |
-
" <th>0</th>\n",
|
922 |
-
" <td>Clean & quiet apt home by the park</td>\n",
|
923 |
-
" <td>Private room</td>\n",
|
924 |
-
" <td>$966</td>\n",
|
925 |
-
" <td>10.0</td>\n",
|
926 |
-
" <td>4.0</td>\n",
|
927 |
-
" <td>Clean up and treat the home the way you'd like...</td>\n",
|
928 |
-
" <td>1</td>\n",
|
929 |
-
" <td>Des Moines</td>\n",
|
930 |
-
" </tr>\n",
|
931 |
-
" <tr>\n",
|
932 |
-
" <th>1</th>\n",
|
933 |
-
" <td>Skylit Midtown Castle</td>\n",
|
934 |
-
" <td>Entire home/apt</td>\n",
|
935 |
-
" <td>$142</td>\n",
|
936 |
-
" <td>30.0</td>\n",
|
937 |
-
" <td>4.0</td>\n",
|
938 |
-
" <td>Pet friendly but please confirm with me if the...</td>\n",
|
939 |
-
" <td>2</td>\n",
|
940 |
-
" <td>Wilmington</td>\n",
|
941 |
-
" </tr>\n",
|
942 |
-
" <tr>\n",
|
943 |
-
" <th>2</th>\n",
|
944 |
-
" <td>THE VILLAGE OF HARLEM....NEW YORK !</td>\n",
|
945 |
-
" <td>Private room</td>\n",
|
946 |
-
" <td>$620</td>\n",
|
947 |
-
" <td>3.0</td>\n",
|
948 |
-
" <td>5.0</td>\n",
|
949 |
-
" <td>I encourage you to use my kitchen, cooking and...</td>\n",
|
950 |
-
" <td>2</td>\n",
|
951 |
-
" <td>St. George</td>\n",
|
952 |
-
" </tr>\n",
|
953 |
-
" <tr>\n",
|
954 |
-
" <th>3</th>\n",
|
955 |
-
" <td>NaN</td>\n",
|
956 |
-
" <td>Entire home/apt</td>\n",
|
957 |
-
" <td>$368</td>\n",
|
958 |
-
" <td>30.0</td>\n",
|
959 |
-
" <td>4.0</td>\n",
|
960 |
-
" <td>NaN</td>\n",
|
961 |
-
" <td>2</td>\n",
|
962 |
-
" <td>Kalamazoo</td>\n",
|
963 |
-
" </tr>\n",
|
964 |
-
" <tr>\n",
|
965 |
-
" <th>4</th>\n",
|
966 |
-
" <td>Entire Apt: Spacious Studio/Loft by central park</td>\n",
|
967 |
-
" <td>Entire home/apt</td>\n",
|
968 |
-
" <td>$204</td>\n",
|
969 |
-
" <td>10.0</td>\n",
|
970 |
-
" <td>3.0</td>\n",
|
971 |
-
" <td>Please no smoking in the house, porch or on th...</td>\n",
|
972 |
-
" <td>3</td>\n",
|
973 |
-
" <td>Cheyenne</td>\n",
|
974 |
-
" </tr>\n",
|
975 |
-
" <tr>\n",
|
976 |
-
" <th>...</th>\n",
|
977 |
-
" <td>...</td>\n",
|
978 |
-
" <td>...</td>\n",
|
979 |
-
" <td>...</td>\n",
|
980 |
-
" <td>...</td>\n",
|
981 |
-
" <td>...</td>\n",
|
982 |
-
" <td>...</td>\n",
|
983 |
-
" <td>...</td>\n",
|
984 |
-
" <td>...</td>\n",
|
985 |
-
" </tr>\n",
|
986 |
-
" <tr>\n",
|
987 |
-
" <th>102594</th>\n",
|
988 |
-
" <td>Spare room in Williamsburg</td>\n",
|
989 |
-
" <td>Private room</td>\n",
|
990 |
-
" <td>$844</td>\n",
|
991 |
-
" <td>1.0</td>\n",
|
992 |
-
" <td>3.0</td>\n",
|
993 |
-
" <td>No Smoking No Parties or Events of any kind Pl...</td>\n",
|
994 |
-
" <td>1</td>\n",
|
995 |
-
" <td>White Plains</td>\n",
|
996 |
-
" </tr>\n",
|
997 |
-
" <tr>\n",
|
998 |
-
" <th>102595</th>\n",
|
999 |
-
" <td>Best Location near Columbia U</td>\n",
|
1000 |
-
" <td>Private room</td>\n",
|
1001 |
-
" <td>$837</td>\n",
|
1002 |
-
" <td>1.0</td>\n",
|
1003 |
-
" <td>2.0</td>\n",
|
1004 |
-
" <td>House rules: Guests agree to the following ter...</td>\n",
|
1005 |
-
" <td>2</td>\n",
|
1006 |
-
" <td>Mosinee</td>\n",
|
1007 |
-
" </tr>\n",
|
1008 |
-
" <tr>\n",
|
1009 |
-
" <th>102596</th>\n",
|
1010 |
-
" <td>Comfy, bright room in Brooklyn</td>\n",
|
1011 |
-
" <td>Private room</td>\n",
|
1012 |
-
" <td>$988</td>\n",
|
1013 |
-
" <td>3.0</td>\n",
|
1014 |
-
" <td>5.0</td>\n",
|
1015 |
-
" <td>NaN</td>\n",
|
1016 |
-
" <td>2</td>\n",
|
1017 |
-
" <td>Amarillo</td>\n",
|
1018 |
-
" </tr>\n",
|
1019 |
-
" <tr>\n",
|
1020 |
-
" <th>102597</th>\n",
|
1021 |
-
" <td>Big Studio-One Stop from Midtown</td>\n",
|
1022 |
-
" <td>Entire home/apt</td>\n",
|
1023 |
-
" <td>$546</td>\n",
|
1024 |
-
" <td>2.0</td>\n",
|
1025 |
-
" <td>3.0</td>\n",
|
1026 |
-
" <td>NaN</td>\n",
|
1027 |
-
" <td>4</td>\n",
|
1028 |
-
" <td>Binghamton</td>\n",
|
1029 |
-
" </tr>\n",
|
1030 |
-
" <tr>\n",
|
1031 |
-
" <th>102598</th>\n",
|
1032 |
-
" <td>585 sf Luxury Studio</td>\n",
|
1033 |
-
" <td>Entire home/apt</td>\n",
|
1034 |
-
" <td>$1,032</td>\n",
|
1035 |
-
" <td>1.0</td>\n",
|
1036 |
-
" <td>3.0</td>\n",
|
1037 |
-
" <td>NaN</td>\n",
|
1038 |
-
" <td>7</td>\n",
|
1039 |
-
" <td>Flint</td>\n",
|
1040 |
-
" </tr>\n",
|
1041 |
-
" </tbody>\n",
|
1042 |
-
"</table>\n",
|
1043 |
-
"<p>102599 rows × 8 columns</p>\n",
|
1044 |
-
"</div>"
|
1045 |
-
],
|
1046 |
-
"text/plain": [
|
1047 |
-
" NAME room type \n",
|
1048 |
-
"0 Clean & quiet apt home by the park Private room \\\n",
|
1049 |
-
"1 Skylit Midtown Castle Entire home/apt \n",
|
1050 |
-
"2 THE VILLAGE OF HARLEM....NEW YORK ! Private room \n",
|
1051 |
-
"3 NaN Entire home/apt \n",
|
1052 |
-
"4 Entire Apt: Spacious Studio/Loft by central park Entire home/apt \n",
|
1053 |
-
"... ... ... \n",
|
1054 |
-
"102594 Spare room in Williamsburg Private room \n",
|
1055 |
-
"102595 Best Location near Columbia U Private room \n",
|
1056 |
-
"102596 Comfy, bright room in Brooklyn Private room \n",
|
1057 |
-
"102597 Big Studio-One Stop from Midtown Entire home/apt \n",
|
1058 |
-
"102598 585 sf Luxury Studio Entire home/apt \n",
|
1059 |
-
"\n",
|
1060 |
-
" price minimum nights review rate number \n",
|
1061 |
-
"0 $966 10.0 4.0 \\\n",
|
1062 |
-
"1 $142 30.0 4.0 \n",
|
1063 |
-
"2 $620 3.0 5.0 \n",
|
1064 |
-
"3 $368 30.0 4.0 \n",
|
1065 |
-
"4 $204 10.0 3.0 \n",
|
1066 |
-
"... ... ... ... \n",
|
1067 |
-
"102594 $844 1.0 3.0 \n",
|
1068 |
-
"102595 $837 1.0 2.0 \n",
|
1069 |
-
"102596 $988 3.0 5.0 \n",
|
1070 |
-
"102597 $546 2.0 3.0 \n",
|
1071 |
-
"102598 $1,032 1.0 3.0 \n",
|
1072 |
-
"\n",
|
1073 |
-
" house_rules maximum occupancy \n",
|
1074 |
-
"0 Clean up and treat the home the way you'd like... 1 \\\n",
|
1075 |
-
"1 Pet friendly but please confirm with me if the... 2 \n",
|
1076 |
-
"2 I encourage you to use my kitchen, cooking and... 2 \n",
|
1077 |
-
"3 NaN 2 \n",
|
1078 |
-
"4 Please no smoking in the house, porch or on th... 3 \n",
|
1079 |
-
"... ... ... \n",
|
1080 |
-
"102594 No Smoking No Parties or Events of any kind Pl... 1 \n",
|
1081 |
-
"102595 House rules: Guests agree to the following ter... 2 \n",
|
1082 |
-
"102596 NaN 2 \n",
|
1083 |
-
"102597 NaN 4 \n",
|
1084 |
-
"102598 NaN 7 \n",
|
1085 |
-
"\n",
|
1086 |
-
" city \n",
|
1087 |
-
"0 Des Moines \n",
|
1088 |
-
"1 Wilmington \n",
|
1089 |
-
"2 St. George \n",
|
1090 |
-
"3 Kalamazoo \n",
|
1091 |
-
"4 Cheyenne \n",
|
1092 |
-
"... ... \n",
|
1093 |
-
"102594 White Plains \n",
|
1094 |
-
"102595 Mosinee \n",
|
1095 |
-
"102596 Amarillo \n",
|
1096 |
-
"102597 Binghamton \n",
|
1097 |
-
"102598 Flint \n",
|
1098 |
-
"\n",
|
1099 |
-
"[102599 rows x 8 columns]"
|
1100 |
-
]
|
1101 |
-
},
|
1102 |
-
"execution_count": 22,
|
1103 |
-
"metadata": {},
|
1104 |
-
"output_type": "execute_result"
|
1105 |
-
}
|
1106 |
-
],
|
1107 |
-
"source": [
|
1108 |
-
"df"
|
1109 |
-
]
|
1110 |
-
},
|
1111 |
-
{
|
1112 |
-
"cell_type": "code",
|
1113 |
-
"execution_count": 50,
|
1114 |
-
"id": "0ec56283",
|
1115 |
-
"metadata": {},
|
1116 |
-
"outputs": [],
|
1117 |
-
"source": [
|
1118 |
-
"import pandas as pd\n",
|
1119 |
-
"data = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/clean_hotels_2022.csv')"
|
1120 |
-
]
|
1121 |
-
},
|
1122 |
-
{
|
1123 |
-
"cell_type": "code",
|
1124 |
-
"execution_count": 52,
|
1125 |
-
"id": "5dc27048",
|
1126 |
-
"metadata": {},
|
1127 |
-
"outputs": [
|
1128 |
-
{
|
1129 |
-
"data": {
|
1130 |
-
"text/html": [
|
1131 |
-
"<div>\n",
|
1132 |
-
"<style scoped>\n",
|
1133 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1134 |
-
" vertical-align: middle;\n",
|
1135 |
-
" }\n",
|
1136 |
-
"\n",
|
1137 |
-
" .dataframe tbody tr th {\n",
|
1138 |
-
" vertical-align: top;\n",
|
1139 |
-
" }\n",
|
1140 |
-
"\n",
|
1141 |
-
" .dataframe thead th {\n",
|
1142 |
-
" text-align: right;\n",
|
1143 |
-
" }\n",
|
1144 |
-
"</style>\n",
|
1145 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1146 |
-
" <thead>\n",
|
1147 |
-
" <tr style=\"text-align: right;\">\n",
|
1148 |
-
" <th></th>\n",
|
1149 |
-
" <th>Unnamed: 0</th>\n",
|
1150 |
-
" <th>NAME</th>\n",
|
1151 |
-
" <th>room type</th>\n",
|
1152 |
-
" <th>price</th>\n",
|
1153 |
-
" <th>minimum nights</th>\n",
|
1154 |
-
" <th>review rate number</th>\n",
|
1155 |
-
" <th>house_rules</th>\n",
|
1156 |
-
" <th>maximum occupancy</th>\n",
|
1157 |
-
" <th>city</th>\n",
|
1158 |
-
" </tr>\n",
|
1159 |
-
" </thead>\n",
|
1160 |
-
" <tbody>\n",
|
1161 |
-
" <tr>\n",
|
1162 |
-
" <th>0</th>\n",
|
1163 |
-
" <td>0</td>\n",
|
1164 |
-
" <td>Clean & quiet apt home by the park</td>\n",
|
1165 |
-
" <td>Private room</td>\n",
|
1166 |
-
" <td>$966</td>\n",
|
1167 |
-
" <td>10.0</td>\n",
|
1168 |
-
" <td>4.0</td>\n",
|
1169 |
-
" <td>Clean up and treat the home the way you'd like...</td>\n",
|
1170 |
-
" <td>1</td>\n",
|
1171 |
-
" <td>Des Moines</td>\n",
|
1172 |
-
" </tr>\n",
|
1173 |
-
" <tr>\n",
|
1174 |
-
" <th>1</th>\n",
|
1175 |
-
" <td>1</td>\n",
|
1176 |
-
" <td>Skylit Midtown Castle</td>\n",
|
1177 |
-
" <td>Entire home/apt</td>\n",
|
1178 |
-
" <td>$142</td>\n",
|
1179 |
-
" <td>30.0</td>\n",
|
1180 |
-
" <td>4.0</td>\n",
|
1181 |
-
" <td>Pet friendly but please confirm with me if the...</td>\n",
|
1182 |
-
" <td>2</td>\n",
|
1183 |
-
" <td>Wilmington</td>\n",
|
1184 |
-
" </tr>\n",
|
1185 |
-
" <tr>\n",
|
1186 |
-
" <th>2</th>\n",
|
1187 |
-
" <td>2</td>\n",
|
1188 |
-
" <td>THE VILLAGE OF HARLEM....NEW YORK !</td>\n",
|
1189 |
-
" <td>Private room</td>\n",
|
1190 |
-
" <td>$620</td>\n",
|
1191 |
-
" <td>3.0</td>\n",
|
1192 |
-
" <td>5.0</td>\n",
|
1193 |
-
" <td>I encourage you to use my kitchen, cooking and...</td>\n",
|
1194 |
-
" <td>2</td>\n",
|
1195 |
-
" <td>St. George</td>\n",
|
1196 |
-
" </tr>\n",
|
1197 |
-
" <tr>\n",
|
1198 |
-
" <th>3</th>\n",
|
1199 |
-
" <td>3</td>\n",
|
1200 |
-
" <td>NaN</td>\n",
|
1201 |
-
" <td>Entire home/apt</td>\n",
|
1202 |
-
" <td>$368</td>\n",
|
1203 |
-
" <td>30.0</td>\n",
|
1204 |
-
" <td>4.0</td>\n",
|
1205 |
-
" <td>NaN</td>\n",
|
1206 |
-
" <td>2</td>\n",
|
1207 |
-
" <td>Kalamazoo</td>\n",
|
1208 |
-
" </tr>\n",
|
1209 |
-
" <tr>\n",
|
1210 |
-
" <th>4</th>\n",
|
1211 |
-
" <td>4</td>\n",
|
1212 |
-
" <td>Entire Apt: Spacious Studio/Loft by central park</td>\n",
|
1213 |
-
" <td>Entire home/apt</td>\n",
|
1214 |
-
" <td>$204</td>\n",
|
1215 |
-
" <td>10.0</td>\n",
|
1216 |
-
" <td>3.0</td>\n",
|
1217 |
-
" <td>Please no smoking in the house, porch or on th...</td>\n",
|
1218 |
-
" <td>3</td>\n",
|
1219 |
-
" <td>Cheyenne</td>\n",
|
1220 |
-
" </tr>\n",
|
1221 |
-
" <tr>\n",
|
1222 |
-
" <th>...</th>\n",
|
1223 |
-
" <td>...</td>\n",
|
1224 |
-
" <td>...</td>\n",
|
1225 |
-
" <td>...</td>\n",
|
1226 |
-
" <td>...</td>\n",
|
1227 |
-
" <td>...</td>\n",
|
1228 |
-
" <td>...</td>\n",
|
1229 |
-
" <td>...</td>\n",
|
1230 |
-
" <td>...</td>\n",
|
1231 |
-
" <td>...</td>\n",
|
1232 |
-
" </tr>\n",
|
1233 |
-
" <tr>\n",
|
1234 |
-
" <th>102594</th>\n",
|
1235 |
-
" <td>102594</td>\n",
|
1236 |
-
" <td>Spare room in Williamsburg</td>\n",
|
1237 |
-
" <td>Private room</td>\n",
|
1238 |
-
" <td>$844</td>\n",
|
1239 |
-
" <td>1.0</td>\n",
|
1240 |
-
" <td>3.0</td>\n",
|
1241 |
-
" <td>No Smoking No Parties or Events of any kind Pl...</td>\n",
|
1242 |
-
" <td>1</td>\n",
|
1243 |
-
" <td>White Plains</td>\n",
|
1244 |
-
" </tr>\n",
|
1245 |
-
" <tr>\n",
|
1246 |
-
" <th>102595</th>\n",
|
1247 |
-
" <td>102595</td>\n",
|
1248 |
-
" <td>Best Location near Columbia U</td>\n",
|
1249 |
-
" <td>Private room</td>\n",
|
1250 |
-
" <td>$837</td>\n",
|
1251 |
-
" <td>1.0</td>\n",
|
1252 |
-
" <td>2.0</td>\n",
|
1253 |
-
" <td>House rules: Guests agree to the following ter...</td>\n",
|
1254 |
-
" <td>2</td>\n",
|
1255 |
-
" <td>Mosinee</td>\n",
|
1256 |
-
" </tr>\n",
|
1257 |
-
" <tr>\n",
|
1258 |
-
" <th>102596</th>\n",
|
1259 |
-
" <td>102596</td>\n",
|
1260 |
-
" <td>Comfy, bright room in Brooklyn</td>\n",
|
1261 |
-
" <td>Private room</td>\n",
|
1262 |
-
" <td>$988</td>\n",
|
1263 |
-
" <td>3.0</td>\n",
|
1264 |
-
" <td>5.0</td>\n",
|
1265 |
-
" <td>NaN</td>\n",
|
1266 |
-
" <td>2</td>\n",
|
1267 |
-
" <td>Amarillo</td>\n",
|
1268 |
-
" </tr>\n",
|
1269 |
-
" <tr>\n",
|
1270 |
-
" <th>102597</th>\n",
|
1271 |
-
" <td>102597</td>\n",
|
1272 |
-
" <td>Big Studio-One Stop from Midtown</td>\n",
|
1273 |
-
" <td>Entire home/apt</td>\n",
|
1274 |
-
" <td>$546</td>\n",
|
1275 |
-
" <td>2.0</td>\n",
|
1276 |
-
" <td>3.0</td>\n",
|
1277 |
-
" <td>NaN</td>\n",
|
1278 |
-
" <td>4</td>\n",
|
1279 |
-
" <td>Binghamton</td>\n",
|
1280 |
-
" </tr>\n",
|
1281 |
-
" <tr>\n",
|
1282 |
-
" <th>102598</th>\n",
|
1283 |
-
" <td>102598</td>\n",
|
1284 |
-
" <td>585 sf Luxury Studio</td>\n",
|
1285 |
-
" <td>Entire home/apt</td>\n",
|
1286 |
-
" <td>$1,032</td>\n",
|
1287 |
-
" <td>1.0</td>\n",
|
1288 |
-
" <td>3.0</td>\n",
|
1289 |
-
" <td>NaN</td>\n",
|
1290 |
-
" <td>7</td>\n",
|
1291 |
-
" <td>Flint</td>\n",
|
1292 |
-
" </tr>\n",
|
1293 |
-
" </tbody>\n",
|
1294 |
-
"</table>\n",
|
1295 |
-
"<p>102599 rows × 9 columns</p>\n",
|
1296 |
-
"</div>"
|
1297 |
-
],
|
1298 |
-
"text/plain": [
|
1299 |
-
" Unnamed: 0 NAME \n",
|
1300 |
-
"0 0 Clean & quiet apt home by the park \\\n",
|
1301 |
-
"1 1 Skylit Midtown Castle \n",
|
1302 |
-
"2 2 THE VILLAGE OF HARLEM....NEW YORK ! \n",
|
1303 |
-
"3 3 NaN \n",
|
1304 |
-
"4 4 Entire Apt: Spacious Studio/Loft by central park \n",
|
1305 |
-
"... ... ... \n",
|
1306 |
-
"102594 102594 Spare room in Williamsburg \n",
|
1307 |
-
"102595 102595 Best Location near Columbia U \n",
|
1308 |
-
"102596 102596 Comfy, bright room in Brooklyn \n",
|
1309 |
-
"102597 102597 Big Studio-One Stop from Midtown \n",
|
1310 |
-
"102598 102598 585 sf Luxury Studio \n",
|
1311 |
-
"\n",
|
1312 |
-
" room type price minimum nights review rate number \n",
|
1313 |
-
"0 Private room $966 10.0 4.0 \\\n",
|
1314 |
-
"1 Entire home/apt $142 30.0 4.0 \n",
|
1315 |
-
"2 Private room $620 3.0 5.0 \n",
|
1316 |
-
"3 Entire home/apt $368 30.0 4.0 \n",
|
1317 |
-
"4 Entire home/apt $204 10.0 3.0 \n",
|
1318 |
-
"... ... ... ... ... \n",
|
1319 |
-
"102594 Private room $844 1.0 3.0 \n",
|
1320 |
-
"102595 Private room $837 1.0 2.0 \n",
|
1321 |
-
"102596 Private room $988 3.0 5.0 \n",
|
1322 |
-
"102597 Entire home/apt $546 2.0 3.0 \n",
|
1323 |
-
"102598 Entire home/apt $1,032 1.0 3.0 \n",
|
1324 |
-
"\n",
|
1325 |
-
" house_rules maximum occupancy \n",
|
1326 |
-
"0 Clean up and treat the home the way you'd like... 1 \\\n",
|
1327 |
-
"1 Pet friendly but please confirm with me if the... 2 \n",
|
1328 |
-
"2 I encourage you to use my kitchen, cooking and... 2 \n",
|
1329 |
-
"3 NaN 2 \n",
|
1330 |
-
"4 Please no smoking in the house, porch or on th... 3 \n",
|
1331 |
-
"... ... ... \n",
|
1332 |
-
"102594 No Smoking No Parties or Events of any kind Pl... 1 \n",
|
1333 |
-
"102595 House rules: Guests agree to the following ter... 2 \n",
|
1334 |
-
"102596 NaN 2 \n",
|
1335 |
-
"102597 NaN 4 \n",
|
1336 |
-
"102598 NaN 7 \n",
|
1337 |
-
"\n",
|
1338 |
-
" city \n",
|
1339 |
-
"0 Des Moines \n",
|
1340 |
-
"1 Wilmington \n",
|
1341 |
-
"2 St. George \n",
|
1342 |
-
"3 Kalamazoo \n",
|
1343 |
-
"4 Cheyenne \n",
|
1344 |
-
"... ... \n",
|
1345 |
-
"102594 White Plains \n",
|
1346 |
-
"102595 Mosinee \n",
|
1347 |
-
"102596 Amarillo \n",
|
1348 |
-
"102597 Binghamton \n",
|
1349 |
-
"102598 Flint \n",
|
1350 |
-
"\n",
|
1351 |
-
"[102599 rows x 9 columns]"
|
1352 |
-
]
|
1353 |
-
},
|
1354 |
-
"execution_count": 52,
|
1355 |
-
"metadata": {},
|
1356 |
-
"output_type": "execute_result"
|
1357 |
-
}
|
1358 |
-
],
|
1359 |
-
"source": [
|
1360 |
-
"data"
|
1361 |
-
]
|
1362 |
-
},
|
1363 |
-
{
|
1364 |
-
"cell_type": "code",
|
1365 |
-
"execution_count": 63,
|
1366 |
-
"id": "bebb9c93",
|
1367 |
-
"metadata": {},
|
1368 |
-
"outputs": [],
|
1369 |
-
"source": [
|
1370 |
-
"filtered_data = data[data.iloc[:, -3].notna()]"
|
1371 |
-
]
|
1372 |
-
},
|
1373 |
-
{
|
1374 |
-
"cell_type": "code",
|
1375 |
-
"execution_count": 64,
|
1376 |
-
"id": "bd010fc9",
|
1377 |
-
"metadata": {},
|
1378 |
-
"outputs": [],
|
1379 |
-
"source": [
|
1380 |
-
"dict_representation = filtered_data.to_dict(orient='split')"
|
1381 |
-
]
|
1382 |
-
},
|
1383 |
-
{
|
1384 |
-
"cell_type": "code",
|
1385 |
-
"execution_count": 71,
|
1386 |
-
"id": "e84db5c4",
|
1387 |
-
"metadata": {},
|
1388 |
-
"outputs": [
|
1389 |
-
{
|
1390 |
-
"data": {
|
1391 |
-
"text/plain": [
|
1392 |
-
"50468"
|
1393 |
-
]
|
1394 |
-
},
|
1395 |
-
"execution_count": 71,
|
1396 |
-
"metadata": {},
|
1397 |
-
"output_type": "execute_result"
|
1398 |
-
}
|
1399 |
-
],
|
1400 |
-
"source": [
|
1401 |
-
"len(dict_representation['data'])"
|
1402 |
-
]
|
1403 |
-
},
|
1404 |
-
{
|
1405 |
-
"cell_type": "code",
|
1406 |
-
"execution_count": 67,
|
1407 |
-
"id": "31eaadf3",
|
1408 |
-
"metadata": {},
|
1409 |
-
"outputs": [],
|
1410 |
-
"source": [
|
1411 |
-
"sample_df = filtered_data.sample(frac=0.1)"
|
1412 |
-
]
|
1413 |
-
},
|
1414 |
-
{
|
1415 |
-
"cell_type": "code",
|
1416 |
-
"execution_count": 69,
|
1417 |
-
"id": "33998ec6",
|
1418 |
-
"metadata": {},
|
1419 |
-
"outputs": [],
|
1420 |
-
"source": [
|
1421 |
-
"sample_df.to_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/clean_hotels_2022.csv')"
|
1422 |
-
]
|
1423 |
-
},
|
1424 |
-
{
|
1425 |
-
"cell_type": "code",
|
1426 |
-
"execution_count": 72,
|
1427 |
-
"id": "25396015",
|
1428 |
-
"metadata": {},
|
1429 |
-
"outputs": [
|
1430 |
-
{
|
1431 |
-
"data": {
|
1432 |
-
"text/plain": [
|
1433 |
-
"5047"
|
1434 |
-
]
|
1435 |
-
},
|
1436 |
-
"execution_count": 72,
|
1437 |
-
"metadata": {},
|
1438 |
-
"output_type": "execute_result"
|
1439 |
-
}
|
1440 |
-
],
|
1441 |
-
"source": [
|
1442 |
-
"len(sample_df)"
|
1443 |
-
]
|
1444 |
-
},
|
1445 |
-
{
|
1446 |
-
"cell_type": "code",
|
1447 |
-
"execution_count": 3,
|
1448 |
-
"id": "17d054b5",
|
1449 |
-
"metadata": {},
|
1450 |
-
"outputs": [],
|
1451 |
-
"source": [
|
1452 |
-
"import pandas as pd\n",
|
1453 |
-
"data = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/clean_hotels_2022.csv')"
|
1454 |
-
]
|
1455 |
-
},
|
1456 |
-
{
|
1457 |
-
"cell_type": "code",
|
1458 |
-
"execution_count": 4,
|
1459 |
-
"id": "64db8d6c",
|
1460 |
-
"metadata": {},
|
1461 |
-
"outputs": [],
|
1462 |
-
"source": [
|
1463 |
-
"data_dict = data.to_dict(orient = 'split')"
|
1464 |
-
]
|
1465 |
-
},
|
1466 |
-
{
|
1467 |
-
"cell_type": "code",
|
1468 |
-
"execution_count": 21,
|
1469 |
-
"id": "b32b2f0c",
|
1470 |
-
"metadata": {},
|
1471 |
-
"outputs": [
|
1472 |
-
{
|
1473 |
-
"name": "stdout",
|
1474 |
-
"output_type": "stream",
|
1475 |
-
"text": [
|
1476 |
-
"0 Unnamed: 0.1\n",
|
1477 |
-
"1 Unnamed: 0\n",
|
1478 |
-
"2 NAME\n",
|
1479 |
-
"3 room type\n",
|
1480 |
-
"4 price\n",
|
1481 |
-
"5 minimum nights\n",
|
1482 |
-
"6 review rate number\n",
|
1483 |
-
"7 house_rules\n",
|
1484 |
-
"8 maximum occupancy\n",
|
1485 |
-
"9 city\n"
|
1486 |
-
]
|
1487 |
-
}
|
1488 |
-
],
|
1489 |
-
"source": [
|
1490 |
-
"for idx, unit in enumerate(data_dict['columns']):\n",
|
1491 |
-
" print(idx,unit)"
|
1492 |
-
]
|
1493 |
-
},
|
1494 |
-
{
|
1495 |
-
"cell_type": "code",
|
1496 |
-
"execution_count": 8,
|
1497 |
-
"id": "fe415c1c",
|
1498 |
-
"metadata": {},
|
1499 |
-
"outputs": [
|
1500 |
-
{
|
1501 |
-
"data": {
|
1502 |
-
"text/plain": [
|
1503 |
-
"[0,\n",
|
1504 |
-
" 'Beautiful room upper manhttn.',\n",
|
1505 |
-
" 'Private room',\n",
|
1506 |
-
" 131.0,\n",
|
1507 |
-
" 1.0,\n",
|
1508 |
-
" 2.0,\n",
|
1509 |
-
" 'No smoking. No pets. ',\n",
|
1510 |
-
" 1,\n",
|
1511 |
-
" 'Christiansted']"
|
1512 |
-
]
|
1513 |
-
},
|
1514 |
-
"execution_count": 8,
|
1515 |
-
"metadata": {},
|
1516 |
-
"output_type": "execute_result"
|
1517 |
-
}
|
1518 |
-
],
|
1519 |
-
"source": [
|
1520 |
-
"data_dict['data'][0]"
|
1521 |
-
]
|
1522 |
-
},
|
1523 |
-
{
|
1524 |
-
"cell_type": "code",
|
1525 |
-
"execution_count": 40,
|
1526 |
-
"id": "38cb5c5a",
|
1527 |
-
"metadata": {},
|
1528 |
-
"outputs": [],
|
1529 |
-
"source": [
|
1530 |
-
"import random\n",
|
1531 |
-
"new_data = []\n",
|
1532 |
-
"for idx, unit in enumerate(data_dict['data']):\n",
|
1533 |
-
" tmp_dict = {k:j for k,j in zip(['NAME','room type', 'price','minimum nights','review rate number','house_rules','maximum occupancy','city'],unit[1:])}\n",
|
1534 |
-
" if type(unit[4]) == str:\n",
|
1535 |
-
" tmp_dict[\"price\"] = eval(unit[4].replace(\"$\",\"\").replace(\",\",\"\"))\n",
|
1536 |
-
" house_rules_number = random.choice([0,1,1,1,2,2,3])\n",
|
1537 |
-
" tmp_dict['house_rules'] = \" & \".join(x for x in random.sample([\"No parties\",\"No smoking\",\"No children under 10\",\"No pets\",\"No visitors\"],house_rules_number))\n",
|
1538 |
-
" tmp_dict['city'] = tmp_dict['city'].split('/')[0]\n",
|
1539 |
-
" new_data.append(tmp_dict)"
|
1540 |
-
]
|
1541 |
-
},
|
1542 |
-
{
|
1543 |
-
"cell_type": "code",
|
1544 |
-
"execution_count": 41,
|
1545 |
-
"id": "ae3d551e",
|
1546 |
-
"metadata": {},
|
1547 |
-
"outputs": [
|
1548 |
-
{
|
1549 |
-
"data": {
|
1550 |
-
"text/plain": [
|
1551 |
-
"{'NAME': 'BIG room with bath & balcony in BK!',\n",
|
1552 |
-
" 'room type': 'Private room',\n",
|
1553 |
-
" 'price': 1123.0,\n",
|
1554 |
-
" 'minimum nights': 1.0,\n",
|
1555 |
-
" 'review rate number': 4.0,\n",
|
1556 |
-
" 'house_rules': 'No parties',\n",
|
1557 |
-
" 'maximum occupancy': 2,\n",
|
1558 |
-
" 'city': 'Louisville'}"
|
1559 |
-
]
|
1560 |
-
},
|
1561 |
-
"execution_count": 41,
|
1562 |
-
"metadata": {},
|
1563 |
-
"output_type": "execute_result"
|
1564 |
-
}
|
1565 |
-
],
|
1566 |
-
"source": [
|
1567 |
-
"new_data[2]"
|
1568 |
-
]
|
1569 |
-
},
|
1570 |
-
{
|
1571 |
-
"cell_type": "code",
|
1572 |
-
"execution_count": 42,
|
1573 |
-
"id": "6fac856c",
|
1574 |
-
"metadata": {},
|
1575 |
-
"outputs": [
|
1576 |
-
{
|
1577 |
-
"name": "stdout",
|
1578 |
-
"output_type": "stream",
|
1579 |
-
"text": [
|
1580 |
-
"\n",
|
1581 |
-
"----------\n",
|
1582 |
-
"No pets & No visitors & No smoking\n",
|
1583 |
-
"----------\n",
|
1584 |
-
"No parties & No visitors\n",
|
1585 |
-
"----------\n",
|
1586 |
-
"No children under 10 & No pets & No smoking\n",
|
1587 |
-
"----------\n",
|
1588 |
-
"No parties & No pets & No visitors\n",
|
1589 |
-
"----------\n",
|
1590 |
-
"No pets & No children under 10\n",
|
1591 |
-
"----------\n",
|
1592 |
-
"No children under 10 & No parties & No pets\n",
|
1593 |
-
"----------\n",
|
1594 |
-
"No visitors\n",
|
1595 |
-
"----------\n",
|
1596 |
-
"No parties & No children under 10\n",
|
1597 |
-
"----------\n",
|
1598 |
-
"No children under 10 & No smoking & No visitors\n",
|
1599 |
-
"----------\n",
|
1600 |
-
"No children under 10 & No parties & No smoking\n",
|
1601 |
-
"----------\n",
|
1602 |
-
"No pets & No smoking & No children under 10\n",
|
1603 |
-
"----------\n",
|
1604 |
-
"No pets & No visitors\n",
|
1605 |
-
"----------\n",
|
1606 |
-
"No visitors & No pets\n",
|
1607 |
-
"----------\n",
|
1608 |
-
"No children under 10 & No smoking & No pets\n",
|
1609 |
-
"----------\n",
|
1610 |
-
"No smoking & No parties & No pets\n",
|
1611 |
-
"----------\n",
|
1612 |
-
"No visitors & No children under 10 & No parties\n",
|
1613 |
-
"----------\n",
|
1614 |
-
"No parties & No children under 10 & No smoking\n",
|
1615 |
-
"----------\n",
|
1616 |
-
"No visitors & No children under 10 & No smoking\n",
|
1617 |
-
"----------\n",
|
1618 |
-
"No pets & No parties\n",
|
1619 |
-
"----------\n",
|
1620 |
-
"No smoking & No parties\n",
|
1621 |
-
"----------\n",
|
1622 |
-
"No smoking & No children under 10\n",
|
1623 |
-
"----------\n",
|
1624 |
-
"No parties & No children under 10 & No visitors\n",
|
1625 |
-
"----------\n",
|
1626 |
-
"No children under 10 & No smoking\n",
|
1627 |
-
"----------\n",
|
1628 |
-
"No visitors & No pets & No smoking\n",
|
1629 |
-
"----------\n",
|
1630 |
-
"No pets\n",
|
1631 |
-
"----------\n",
|
1632 |
-
"No children under 10 & No pets\n",
|
1633 |
-
"----------\n",
|
1634 |
-
"No visitors & No smoking\n",
|
1635 |
-
"----------\n",
|
1636 |
-
"No smoking\n",
|
1637 |
-
"----------\n",
|
1638 |
-
"No parties & No smoking & No children under 10\n",
|
1639 |
-
"----------\n",
|
1640 |
-
"No parties & No smoking\n",
|
1641 |
-
"----------\n",
|
1642 |
-
"No smoking & No visitors & No parties\n",
|
1643 |
-
"----------\n",
|
1644 |
-
"No pets & No smoking\n",
|
1645 |
-
"----------\n",
|
1646 |
-
"No pets & No smoking & No parties\n",
|
1647 |
-
"----------\n",
|
1648 |
-
"No smoking & No children under 10 & No visitors\n",
|
1649 |
-
"----------\n",
|
1650 |
-
"No parties & No smoking & No visitors\n",
|
1651 |
-
"----------\n",
|
1652 |
-
"No visitors & No parties\n",
|
1653 |
-
"----------\n",
|
1654 |
-
"No visitors & No children under 10\n",
|
1655 |
-
"----------\n",
|
1656 |
-
"No parties & No smoking & No pets\n",
|
1657 |
-
"----------\n",
|
1658 |
-
"No children under 10 & No pets & No visitors\n",
|
1659 |
-
"----------\n",
|
1660 |
-
"No smoking & No pets & No parties\n",
|
1661 |
-
"----------\n",
|
1662 |
-
"No children under 10 & No smoking & No parties\n",
|
1663 |
-
"----------\n",
|
1664 |
-
"No visitors & No children under 10 & No pets\n",
|
1665 |
-
"----------\n",
|
1666 |
-
"No children under 10 & No parties\n",
|
1667 |
-
"----------\n",
|
1668 |
-
"No pets & No parties & No visitors\n",
|
1669 |
-
"----------\n",
|
1670 |
-
"No children under 10 & No visitors & No parties\n",
|
1671 |
-
"----------\n",
|
1672 |
-
"No parties & No pets\n",
|
1673 |
-
"----------\n",
|
1674 |
-
"No visitors & No parties & No pets\n",
|
1675 |
-
"----------\n",
|
1676 |
-
"No smoking & No pets & No visitors\n",
|
1677 |
-
"----------\n",
|
1678 |
-
"No smoking & No pets\n",
|
1679 |
-
"----------\n",
|
1680 |
-
"No visitors & No smoking & No children under 10\n",
|
1681 |
-
"----------\n",
|
1682 |
-
"No pets & No children under 10 & No parties\n",
|
1683 |
-
"----------\n",
|
1684 |
-
"No visitors & No pets & No children under 10\n",
|
1685 |
-
"----------\n",
|
1686 |
-
"No pets & No children under 10 & No smoking\n",
|
1687 |
-
"----------\n",
|
1688 |
-
"No parties & No visitors & No children under 10\n",
|
1689 |
-
"----------\n",
|
1690 |
-
"No pets & No smoking & No visitors\n",
|
1691 |
-
"----------\n",
|
1692 |
-
"No pets & No parties & No smoking\n",
|
1693 |
-
"----------\n",
|
1694 |
-
"No parties & No visitors & No smoking\n",
|
1695 |
-
"----------\n",
|
1696 |
-
"No pets & No visitors & No children under 10\n",
|
1697 |
-
"----------\n",
|
1698 |
-
"No parties & No visitors & No pets\n",
|
1699 |
-
"----------\n",
|
1700 |
-
"No children under 10\n",
|
1701 |
-
"----------\n",
|
1702 |
-
"No children under 10 & No pets & No parties\n",
|
1703 |
-
"----------\n",
|
1704 |
-
"No children under 10 & No visitors & No smoking\n",
|
1705 |
-
"----------\n",
|
1706 |
-
"No smoking & No children under 10 & No parties\n",
|
1707 |
-
"----------\n",
|
1708 |
-
"No pets & No parties & No children under 10\n",
|
1709 |
-
"----------\n",
|
1710 |
-
"No children under 10 & No visitors & No pets\n",
|
1711 |
-
"----------\n",
|
1712 |
-
"No parties & No pets & No smoking\n",
|
1713 |
-
"----------\n",
|
1714 |
-
"No pets & No children under 10 & No visitors\n",
|
1715 |
-
"----------\n",
|
1716 |
-
"No parties & No children under 10 & No pets\n",
|
1717 |
-
"----------\n",
|
1718 |
-
"No parties & No pets & No children under 10\n",
|
1719 |
-
"----------\n",
|
1720 |
-
"No smoking & No parties & No visitors\n",
|
1721 |
-
"----------\n",
|
1722 |
-
"No parties\n",
|
1723 |
-
"----------\n",
|
1724 |
-
"No visitors & No pets & No parties\n",
|
1725 |
-
"----------\n",
|
1726 |
-
"No children under 10 & No visitors\n",
|
1727 |
-
"----------\n",
|
1728 |
-
"No smoking & No children under 10 & No pets\n",
|
1729 |
-
"----------\n",
|
1730 |
-
"No smoking & No parties & No children under 10\n",
|
1731 |
-
"----------\n",
|
1732 |
-
"No visitors & No smoking & No parties\n",
|
1733 |
-
"----------\n",
|
1734 |
-
"No pets & No visitors & No parties\n",
|
1735 |
-
"----------\n",
|
1736 |
-
"No smoking & No visitors\n",
|
1737 |
-
"----------\n",
|
1738 |
-
"No smoking & No visitors & No children under 10\n",
|
1739 |
-
"----------\n",
|
1740 |
-
"No visitors & No smoking & No pets\n",
|
1741 |
-
"----------\n",
|
1742 |
-
"No smoking & No visitors & No pets\n",
|
1743 |
-
"----------\n",
|
1744 |
-
"No visitors & No parties & No smoking\n",
|
1745 |
-
"----------\n",
|
1746 |
-
"No smoking & No pets & No children under 10\n",
|
1747 |
-
"----------\n",
|
1748 |
-
"No children under 10 & No parties & No visitors\n",
|
1749 |
-
"----------\n",
|
1750 |
-
"No visitors & No parties & No children under 10\n",
|
1751 |
-
"----------\n"
|
1752 |
-
]
|
1753 |
-
}
|
1754 |
-
],
|
1755 |
-
"source": [
|
1756 |
-
"maximum_occupancy_set = set()\n",
|
1757 |
-
"for unit in new_data:\n",
|
1758 |
-
" maximum_occupancy_set.add(unit['house_rules'])\n",
|
1759 |
-
"for unit in maximum_occupancy_set:\n",
|
1760 |
-
" print(unit)\n",
|
1761 |
-
" print(\"----------\")"
|
1762 |
-
]
|
1763 |
-
},
|
1764 |
-
{
|
1765 |
-
"cell_type": "code",
|
1766 |
-
"execution_count": 45,
|
1767 |
-
"id": "8056052a",
|
1768 |
-
"metadata": {},
|
1769 |
-
"outputs": [
|
1770 |
-
{
|
1771 |
-
"data": {
|
1772 |
-
"text/html": [
|
1773 |
-
"<div>\n",
|
1774 |
-
"<style scoped>\n",
|
1775 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1776 |
-
" vertical-align: middle;\n",
|
1777 |
-
" }\n",
|
1778 |
-
"\n",
|
1779 |
-
" .dataframe tbody tr th {\n",
|
1780 |
-
" vertical-align: top;\n",
|
1781 |
-
" }\n",
|
1782 |
-
"\n",
|
1783 |
-
" .dataframe thead th {\n",
|
1784 |
-
" text-align: right;\n",
|
1785 |
-
" }\n",
|
1786 |
-
"</style>\n",
|
1787 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1788 |
-
" <thead>\n",
|
1789 |
-
" <tr style=\"text-align: right;\">\n",
|
1790 |
-
" <th></th>\n",
|
1791 |
-
" <th>NAME</th>\n",
|
1792 |
-
" <th>room type</th>\n",
|
1793 |
-
" <th>price</th>\n",
|
1794 |
-
" <th>minimum nights</th>\n",
|
1795 |
-
" <th>review rate number</th>\n",
|
1796 |
-
" <th>house_rules</th>\n",
|
1797 |
-
" <th>maximum occupancy</th>\n",
|
1798 |
-
" <th>city</th>\n",
|
1799 |
-
" </tr>\n",
|
1800 |
-
" </thead>\n",
|
1801 |
-
" <tbody>\n",
|
1802 |
-
" <tr>\n",
|
1803 |
-
" <th>0</th>\n",
|
1804 |
-
" <td>Beautiful room upper manhttn.</td>\n",
|
1805 |
-
" <td>Private room</td>\n",
|
1806 |
-
" <td>131.0</td>\n",
|
1807 |
-
" <td>1.0</td>\n",
|
1808 |
-
" <td>2.0</td>\n",
|
1809 |
-
" <td>No smoking</td>\n",
|
1810 |
-
" <td>1</td>\n",
|
1811 |
-
" <td>Christiansted</td>\n",
|
1812 |
-
" </tr>\n",
|
1813 |
-
" <tr>\n",
|
1814 |
-
" <th>1</th>\n",
|
1815 |
-
" <td>Roomy and Comftable Room</td>\n",
|
1816 |
-
" <td>Private room</td>\n",
|
1817 |
-
" <td>548.0</td>\n",
|
1818 |
-
" <td>10.0</td>\n",
|
1819 |
-
" <td>5.0</td>\n",
|
1820 |
-
" <td>No children under 10 & No parties</td>\n",
|
1821 |
-
" <td>2</td>\n",
|
1822 |
-
" <td>Laredo</td>\n",
|
1823 |
-
" </tr>\n",
|
1824 |
-
" <tr>\n",
|
1825 |
-
" <th>2</th>\n",
|
1826 |
-
" <td>BIG room with bath & balcony in BK!</td>\n",
|
1827 |
-
" <td>Private room</td>\n",
|
1828 |
-
" <td>1123.0</td>\n",
|
1829 |
-
" <td>1.0</td>\n",
|
1830 |
-
" <td>4.0</td>\n",
|
1831 |
-
" <td>No parties</td>\n",
|
1832 |
-
" <td>2</td>\n",
|
1833 |
-
" <td>Louisville</td>\n",
|
1834 |
-
" </tr>\n",
|
1835 |
-
" <tr>\n",
|
1836 |
-
" <th>3</th>\n",
|
1837 |
-
" <td>4A-</td>\n",
|
1838 |
-
" <td>Entire home/apt</td>\n",
|
1839 |
-
" <td>225.0</td>\n",
|
1840 |
-
" <td>30.0</td>\n",
|
1841 |
-
" <td>4.0</td>\n",
|
1842 |
-
" <td>No pets</td>\n",
|
1843 |
-
" <td>3</td>\n",
|
1844 |
-
" <td>Greensboro</td>\n",
|
1845 |
-
" </tr>\n",
|
1846 |
-
" <tr>\n",
|
1847 |
-
" <th>4</th>\n",
|
1848 |
-
" <td>Nice and Comfortable Private Room</td>\n",
|
1849 |
-
" <td>Private room</td>\n",
|
1850 |
-
" <td>761.0</td>\n",
|
1851 |
-
" <td>2.0</td>\n",
|
1852 |
-
" <td>1.0</td>\n",
|
1853 |
-
" <td>No smoking & No parties</td>\n",
|
1854 |
-
" <td>2</td>\n",
|
1855 |
-
" <td>Cape Girardeau</td>\n",
|
1856 |
-
" </tr>\n",
|
1857 |
-
" <tr>\n",
|
1858 |
-
" <th>...</th>\n",
|
1859 |
-
" <td>...</td>\n",
|
1860 |
-
" <td>...</td>\n",
|
1861 |
-
" <td>...</td>\n",
|
1862 |
-
" <td>...</td>\n",
|
1863 |
-
" <td>...</td>\n",
|
1864 |
-
" <td>...</td>\n",
|
1865 |
-
" <td>...</td>\n",
|
1866 |
-
" <td>...</td>\n",
|
1867 |
-
" </tr>\n",
|
1868 |
-
" <tr>\n",
|
1869 |
-
" <th>5042</th>\n",
|
1870 |
-
" <td>Amazing LOFT in Prime Williamsburg</td>\n",
|
1871 |
-
" <td>Private room</td>\n",
|
1872 |
-
" <td>249.0</td>\n",
|
1873 |
-
" <td>5.0</td>\n",
|
1874 |
-
" <td>5.0</td>\n",
|
1875 |
-
" <td>No pets</td>\n",
|
1876 |
-
" <td>2</td>\n",
|
1877 |
-
" <td>Trenton</td>\n",
|
1878 |
-
" </tr>\n",
|
1879 |
-
" <tr>\n",
|
1880 |
-
" <th>5043</th>\n",
|
1881 |
-
" <td>Private Queen Bedroom in Brooklyn</td>\n",
|
1882 |
-
" <td>Private room</td>\n",
|
1883 |
-
" <td>1032.0</td>\n",
|
1884 |
-
" <td>1.0</td>\n",
|
1885 |
-
" <td>1.0</td>\n",
|
1886 |
-
" <td>No pets</td>\n",
|
1887 |
-
" <td>1</td>\n",
|
1888 |
-
" <td>Des Moines</td>\n",
|
1889 |
-
" </tr>\n",
|
1890 |
-
" <tr>\n",
|
1891 |
-
" <th>5044</th>\n",
|
1892 |
-
" <td>Bushwick / Bed Sty Retreat</td>\n",
|
1893 |
-
" <td>Private room</td>\n",
|
1894 |
-
" <td>546.0</td>\n",
|
1895 |
-
" <td>2.0</td>\n",
|
1896 |
-
" <td>4.0</td>\n",
|
1897 |
-
" <td>No children under 10 & No visitors & No smoking</td>\n",
|
1898 |
-
" <td>2</td>\n",
|
1899 |
-
" <td>Scottsbluff</td>\n",
|
1900 |
-
" </tr>\n",
|
1901 |
-
" <tr>\n",
|
1902 |
-
" <th>5045</th>\n",
|
1903 |
-
" <td>Charming Mid-Century Studio</td>\n",
|
1904 |
-
" <td>Entire home/apt</td>\n",
|
1905 |
-
" <td>1115.0</td>\n",
|
1906 |
-
" <td>2.0</td>\n",
|
1907 |
-
" <td>5.0</td>\n",
|
1908 |
-
" <td>No pets & No children under 10</td>\n",
|
1909 |
-
" <td>7</td>\n",
|
1910 |
-
" <td>Butte</td>\n",
|
1911 |
-
" </tr>\n",
|
1912 |
-
" <tr>\n",
|
1913 |
-
" <th>5046</th>\n",
|
1914 |
-
" <td>3 Bed/ 2 Bath Full Apt. BK Heights</td>\n",
|
1915 |
-
" <td>Entire home/apt</td>\n",
|
1916 |
-
" <td>396.0</td>\n",
|
1917 |
-
" <td>2.0</td>\n",
|
1918 |
-
" <td>1.0</td>\n",
|
1919 |
-
" <td>No smoking</td>\n",
|
1920 |
-
" <td>3</td>\n",
|
1921 |
-
" <td>Norfolk</td>\n",
|
1922 |
-
" </tr>\n",
|
1923 |
-
" </tbody>\n",
|
1924 |
-
"</table>\n",
|
1925 |
-
"<p>5047 rows × 8 columns</p>\n",
|
1926 |
-
"</div>"
|
1927 |
-
],
|
1928 |
-
"text/plain": [
|
1929 |
-
" NAME room type price \n",
|
1930 |
-
"0 Beautiful room upper manhttn. Private room 131.0 \\\n",
|
1931 |
-
"1 Roomy and Comftable Room Private room 548.0 \n",
|
1932 |
-
"2 BIG room with bath & balcony in BK! Private room 1123.0 \n",
|
1933 |
-
"3 4A- Entire home/apt 225.0 \n",
|
1934 |
-
"4 Nice and Comfortable Private Room Private room 761.0 \n",
|
1935 |
-
"... ... ... ... \n",
|
1936 |
-
"5042 Amazing LOFT in Prime Williamsburg Private room 249.0 \n",
|
1937 |
-
"5043 Private Queen Bedroom in Brooklyn Private room 1032.0 \n",
|
1938 |
-
"5044 Bushwick / Bed Sty Retreat Private room 546.0 \n",
|
1939 |
-
"5045 Charming Mid-Century Studio Entire home/apt 1115.0 \n",
|
1940 |
-
"5046 3 Bed/ 2 Bath Full Apt. BK Heights Entire home/apt 396.0 \n",
|
1941 |
-
"\n",
|
1942 |
-
" minimum nights review rate number \n",
|
1943 |
-
"0 1.0 2.0 \\\n",
|
1944 |
-
"1 10.0 5.0 \n",
|
1945 |
-
"2 1.0 4.0 \n",
|
1946 |
-
"3 30.0 4.0 \n",
|
1947 |
-
"4 2.0 1.0 \n",
|
1948 |
-
"... ... ... \n",
|
1949 |
-
"5042 5.0 5.0 \n",
|
1950 |
-
"5043 1.0 1.0 \n",
|
1951 |
-
"5044 2.0 4.0 \n",
|
1952 |
-
"5045 2.0 5.0 \n",
|
1953 |
-
"5046 2.0 1.0 \n",
|
1954 |
-
"\n",
|
1955 |
-
" house_rules maximum occupancy \n",
|
1956 |
-
"0 No smoking 1 \\\n",
|
1957 |
-
"1 No children under 10 & No parties 2 \n",
|
1958 |
-
"2 No parties 2 \n",
|
1959 |
-
"3 No pets 3 \n",
|
1960 |
-
"4 No smoking & No parties 2 \n",
|
1961 |
-
"... ... ... \n",
|
1962 |
-
"5042 No pets 2 \n",
|
1963 |
-
"5043 No pets 1 \n",
|
1964 |
-
"5044 No children under 10 & No visitors & No smoking 2 \n",
|
1965 |
-
"5045 No pets & No children under 10 7 \n",
|
1966 |
-
"5046 No smoking 3 \n",
|
1967 |
-
"\n",
|
1968 |
-
" city \n",
|
1969 |
-
"0 Christiansted \n",
|
1970 |
-
"1 Laredo \n",
|
1971 |
-
"2 Louisville \n",
|
1972 |
-
"3 Greensboro \n",
|
1973 |
-
"4 Cape Girardeau \n",
|
1974 |
-
"... ... \n",
|
1975 |
-
"5042 Trenton \n",
|
1976 |
-
"5043 Des Moines \n",
|
1977 |
-
"5044 Scottsbluff \n",
|
1978 |
-
"5045 Butte \n",
|
1979 |
-
"5046 Norfolk \n",
|
1980 |
-
"\n",
|
1981 |
-
"[5047 rows x 8 columns]"
|
1982 |
-
]
|
1983 |
-
},
|
1984 |
-
"execution_count": 45,
|
1985 |
-
"metadata": {},
|
1986 |
-
"output_type": "execute_result"
|
1987 |
-
}
|
1988 |
-
],
|
1989 |
-
"source": [
|
1990 |
-
"df"
|
1991 |
-
]
|
1992 |
-
},
|
1993 |
-
{
|
1994 |
-
"cell_type": "code",
|
1995 |
-
"execution_count": 44,
|
1996 |
-
"id": "54423e0d",
|
1997 |
-
"metadata": {},
|
1998 |
-
"outputs": [],
|
1999 |
-
"source": [
|
2000 |
-
"df = pd.DataFrame(new_data)\n",
|
2001 |
-
"df.to_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/clean_hotels_2022.csv')"
|
2002 |
-
]
|
2003 |
-
},
|
2004 |
-
{
|
2005 |
-
"cell_type": "code",
|
2006 |
-
"execution_count": null,
|
2007 |
-
"id": "5767aa80",
|
2008 |
-
"metadata": {},
|
2009 |
-
"outputs": [],
|
2010 |
-
"source": [
|
2011 |
-
"df.rename(columns={'old_name1': 'new_name1', 'old_name2': 'new_name2'}, inplace=True)\n",
|
2012 |
-
"df.to_csv('/home/xj/toolAugEnv/code/toolConstraint/database/hotels/clean_hotels_2022.csv')"
|
2013 |
-
]
|
2014 |
-
}
|
2015 |
-
],
|
2016 |
-
"metadata": {
|
2017 |
-
"kernelspec": {
|
2018 |
-
"display_name": "Python 3 (ipykernel)",
|
2019 |
-
"language": "python",
|
2020 |
-
"name": "python3"
|
2021 |
-
},
|
2022 |
-
"language_info": {
|
2023 |
-
"codemirror_mode": {
|
2024 |
-
"name": "ipython",
|
2025 |
-
"version": 3
|
2026 |
-
},
|
2027 |
-
"file_extension": ".py",
|
2028 |
-
"mimetype": "text/x-python",
|
2029 |
-
"name": "python",
|
2030 |
-
"nbconvert_exporter": "python",
|
2031 |
-
"pygments_lexer": "ipython3",
|
2032 |
-
"version": "3.9.16"
|
2033 |
-
}
|
2034 |
-
},
|
2035 |
-
"nbformat": 4,
|
2036 |
-
"nbformat_minor": 5
|
2037 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|