File size: 3,452 Bytes
161bfc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf0d6b6
161bfc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a8df8b
161bfc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c3227
161bfc9
 
 
 
 
d7f97d1
161bfc9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import pandas as pd
from transformers import set_seed
import torch
import torch.nn as nn
from collections import OrderedDict
import warnings
import random
import gradio as gr

warnings.filterwarnings('ignore')
set_seed(4)  
device = "cpu"
model_checkpoint = "facebook/esm2_t12_35M_UR50D"
dropout = 0.1

def setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
setup_seed(4)

class MyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320)
        self.bn1 = nn.BatchNorm1d(256)
        self.bn2 = nn.BatchNorm1d(128)
        self.bn3 = nn.BatchNorm1d(64)
        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(320,256)
        self.fc2 = nn.Linear(256,128)
        self.fc3 = nn.Linear(128,64)
        self.output_layer = nn.Linear(64,2)
        self.dropout = nn.Dropout(dropout)

    def forward(self,x):
        with torch.no_grad():
            bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) 
        output_feature = self.dropout(bert_output["logits"])
        output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature))))
        output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature))))
        output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature))))
        output_feature = self.dropout(self.output_layer(output_feature))
        return torch.softmax(output_feature,dim=1)

model = MyModel()
model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False)
model = model.to(device)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

def pre(file):
    test_sequences = file
    max_len = 30
    test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt')
    out_probability = []
    with torch.no_grad():
        predict = model(test_data)
        out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist())
        test_argmax = np.argmax(predict.cpu(), axis=1).tolist()
    id2str = {0:"non-nAChRs", 1:"nAChRs"}
    return id2str[test_argmax[0]], out_probability[0]

def conotoxinfinder(files):
    fr=open(files, 'r')
    seqs = []
    for line in fr:
        if not line.startswith('>'):    
            seqs.append(line)
    seq_all = []
    output_all = []
    probability_all = []
    for seq in seqs:
        output, probability = pre(str(seq))
        seq_all.append(seq)
        output_all.append(output)
        probability_all.append(probability)
    summary = OrderedDict()
    summary['Seq'] = seq_all
    summary['Class'] = output_all
    summary['Probability'] = probability_all
    summary_df = pd.DataFrame(summary)
    summary_df.to_csv('output.csv', index=False)
    return 'output.csv'

with open("conotoxinfinder.md", "r") as f:
    description = f.read()
iface = gr.Interface(fn=conotoxinfinder,
                     title="ConotoxinFinder nAChRs",
                     inputs=["file"
                             ],
                     outputs= "file",
                     description=description
                     )
iface.launch()