import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification import pandas as pd from transformers import set_seed import torch import torch.nn as nn from collections import OrderedDict import warnings import random import gradio as gr warnings.filterwarnings('ignore') set_seed(4) device = "cpu" model_checkpoint = "facebook/esm2_t12_35M_UR50D" dropout = 0.1 def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True setup_seed(4) class MyModel(nn.Module): def __init__(self): super().__init__() self.bert = AutoModelForSequenceClassification.from_pretrained(model_checkpoint,num_labels=320) self.bn1 = nn.BatchNorm1d(256) self.bn2 = nn.BatchNorm1d(128) self.bn3 = nn.BatchNorm1d(64) self.relu = nn.ReLU() self.fc1 = nn.Linear(320,256) self.fc2 = nn.Linear(256,128) self.fc3 = nn.Linear(128,64) self.output_layer = nn.Linear(64,2) self.dropout = nn.Dropout(dropout) def forward(self,x): with torch.no_grad(): bert_output = self.bert(input_ids=x['input_ids'].to(device),attention_mask=x['attention_mask'].to(device)) output_feature = self.dropout(bert_output["logits"]) output_feature = self.dropout(self.relu(self.bn1(self.fc1(output_feature)))) output_feature = self.dropout(self.relu(self.bn2(self.fc2(output_feature)))) output_feature = self.dropout(self.relu(self.bn3(self.fc3(output_feature)))) output_feature = self.dropout(self.output_layer(output_feature)) return torch.softmax(output_feature,dim=1) model = MyModel() model.load_state_dict(torch.load("best_model.pth", map_location=torch.device('cpu')), strict=False) model = model.to(device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) def pre(file): test_sequences = file max_len = 30 test_data = tokenizer(test_sequences, max_length=max_len, padding="max_length",truncation=True, return_tensors='pt') out_probability = [] with torch.no_grad(): predict = model(test_data) out_probability.extend(np.max(np.array(predict.cpu()),axis=1).tolist()) test_argmax = np.argmax(predict.cpu(), axis=1).tolist() id2str = {0:"non-nAChRs", 1:"nAChRs"} return id2str[test_argmax[0]], out_probability[0] def conotoxinfinder(files): fr=open(files, 'r') seqs = [] for line in fr: if not line.startswith('>'): seqs.append(line) seq_all = [] output_all = [] probability_all = [] for seq in seqs: output, probability = pre(str(seq)) seq_all.append(seq) output_all.append(output) probability_all.append(probability) summary = OrderedDict() summary['Seq'] = seq_all summary['Class'] = output_all summary['Probability'] = probability_all summary_df = pd.DataFrame(summary) summary_df.to_csv('output.csv', index=False) return 'output.csv' with open("conotoxinfinder.md", "r") as f: description = f.read() iface = gr.Interface(fn=conotoxinfinder, title="ConotoxinFinder nAChRs", inputs=["file" ], outputs= "file", description=description ) iface.launch()