Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,27 +9,21 @@ from transformers import AutoProcessor
|
|
9 |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
|
10 |
import torch
|
11 |
from datasets import load_metric
|
12 |
-
from transformers import
|
13 |
from transformers.data.data_collator import default_data_collator
|
14 |
|
15 |
|
16 |
-
from transformers import
|
17 |
from datasets import load_dataset
|
18 |
from PIL import Image, ImageDraw, ImageFont
|
19 |
|
20 |
|
21 |
-
|
22 |
-
model =
|
|
|
23 |
|
24 |
|
25 |
|
26 |
-
# load image example
|
27 |
-
dataset = load_dataset("darentang/generated", split="test")
|
28 |
-
Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
|
29 |
-
Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
|
30 |
-
Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
|
31 |
-
# define id2label, label2color
|
32 |
-
labels = dataset.features['ner_tags'].feature.names
|
33 |
id2label = {0: 'O', 1: 'B-HEADER', 2: 'I-HEADER', 3: 'B-QUESTION', 4: 'I-QUESTION', 5: 'B-ANSWER', 6: 'I-ANSWER'}
|
34 |
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
35 |
|
@@ -54,7 +48,7 @@ def process_image(image):
|
|
54 |
width, height = image.size
|
55 |
|
56 |
# encode
|
57 |
-
encoding =
|
58 |
offset_mapping = encoding.pop('offset_mapping')
|
59 |
|
60 |
# forward pass
|
|
|
9 |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
|
10 |
import torch
|
11 |
from datasets import load_metric
|
12 |
+
from transformers import LayoutLMTokenizer
|
13 |
from transformers.data.data_collator import default_data_collator
|
14 |
|
15 |
|
16 |
+
from transformers import LayoutLMForTokenClassification
|
17 |
from datasets import load_dataset
|
18 |
from PIL import Image, ImageDraw, ImageFont
|
19 |
|
20 |
|
21 |
+
tokenizer = LayoutLMTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
|
22 |
+
model = LayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased", num_labels=13)
|
23 |
+
|
24 |
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
id2label = {0: 'O', 1: 'B-HEADER', 2: 'I-HEADER', 3: 'B-QUESTION', 4: 'I-QUESTION', 5: 'B-ANSWER', 6: 'I-ANSWER'}
|
28 |
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
|
29 |
|
|
|
48 |
width, height = image.size
|
49 |
|
50 |
# encode
|
51 |
+
encoding = tokenizer(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
|
52 |
offset_mapping = encoding.pop('offset_mapping')
|
53 |
|
54 |
# forward pass
|