Spaces:
Running
Running
File size: 7,830 Bytes
ee7f7d6 d948530 bc4ba59 271a7bc bc4ba59 271a7bc bc4ba59 271a7bc bc4ba59 271a7bc c2eddce 07d05ef c2eddce b4d6bb3 c2eddce b4d6bb3 c2eddce 5853d00 c2eddce fcaff26 92f472f c4bf23b ee7f7d6 92f472f c2eddce 4da45b0 c4bf23b 4da45b0 60efdc5 928b284 bc4ba59 928b284 bc4ba59 928b284 bc4ba59 928b284 bc4ba59 928b284 c2eddce ec5f0f6 2146954 ee7f7d6 fd2e0f8 928b284 f392846 928b284 2c9b2ea ee7f7d6 d948530 bc4ba59 ec5f0f6 bc4ba59 d43a916 d1b89c7 bc4ba59 3f21598 7d4d857 3f21598 3160f08 c2eddce 34d1c6e 2146954 0865c1d 2146954 c159a7b ee7f7d6 d63ccb2 3f21598 bc4ba59 996dc92 3f21598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from run import process
import time
import subprocess
import os
import argparse
import cv2
import sys
from PIL import Image
import torch
import gradio as gr
TESTdevice = "cpu"
index = 1
def mainTest(inputpath, outpath):
watermark = deep_nude_process(inputpath)
watermark1 = cv2.cvtColor(watermark, cv2.COLOR_BGRA2RGBA)
return watermark1
def deep_nude_process(inputpath):
dress = cv2.imread(inputpath)
h = dress.shape[0]
w = dress.shape[1]
dress = cv2.resize(dress, (512, 512), interpolation=cv2.INTER_CUBIC)
watermark = process(dress)
watermark = cv2.resize(watermark, (w, h), interpolation=cv2.INTER_CUBIC)
return watermark
def inference(img):
global index
bgra = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
inputpath = f"input_{index}.jpg"
cv2.imwrite(inputpath, bgra)
outputpath = f"out_{index}.jpg"
index += 1
print(time.strftime("START!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
output = mainTest(inputpath, outputpath)
print(time.strftime("Finish!!!!!!!!! %Y-%m-%d %H:%M:%S", time.localtime()))
return output
def load_image_from_file(file_path, new_height=None):
"""
Load an image from a file and optionally resize it while maintaining the aspect ratio.
Args:
file_path (str): The path to the image file.
new_height (int, optional): The new height for the image. If None, the image is not resized.
Returns:
Image: The loaded (and optionally resized) image.
"""
try:
img = Image.open(file_path)
if (new_height is not None):
# Calculate new width to maintain aspect ratio
aspect_ratio = img.width / img.height
new_width = int(new_height * aspect_ratio)
# Resize the image
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
except FileNotFoundError:
print(f"File not found: {file_path}")
return None
except Image.UnidentifiedImageError:
print(f"Cannot identify image file: {file_path}")
return None
except Exception as e:
print(f"Error loading image from file: {e}")
return None
title = "Free Undress AI v.1.0"
description = "Try <a href='https://outsourceit.today/download-apps-like-deepnude-alternatives/'>37 DeepNude Alternatives</a><br><br>Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait 40-60 seconds for a picture. π Do not upload personal photos π There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to see the outline of a human body at least!"
examples = [
[load_image_from_file('example9.webp')],
[load_image_from_file('example2.png')],
[load_image_from_file('example1.png')],
[load_image_from_file('example5.webp')],
[load_image_from_file('example6.webp')],
[load_image_from_file('example8.webp')],
]
js='''
<script>
window.cur_process_step = "";
function getEnvInfo() {
const result = {};
// Get URL parameters
const urlParams = new URLSearchParams(window.location.search);
for (const [key, value] of urlParams) {
result[key] = value;
}
// Get current domain and convert to lowercase
result["__domain"] = window.location.hostname.toLowerCase();
// Get iframe parent domain, if any, and convert to lowercase
try {
if (window.self !== window.top) {
result["__iframe_domain"] = document.referrer
? new URL(document.referrer).hostname.toLowerCase()
: "unable to get iframe parent domain";
}else{
result["__iframe_domain"] = "";
}
} catch (e) {
result["__iframe_domain"] = "unable to access iframe parent domain";
}
return result;
}
function isValidEnv(){
envInfo = getEnvInfo();
return envInfo["e"] == "1" ||
envInfo["__domain"].indexOf("nsfwais.io") != -1 ||
envInfo["__iframe_domain"].indexOf("nsfwais.io") != -1 ||
envInfo["__domain"].indexOf("127.0.0.1") != -1 ||
envInfo["__iframe_domain"].indexOf("127.0.0.1") != -1;
}
window.postMessageToParent = function(img, event, source, value) {
// Construct the message object with the provided parameters
console.log("post start",event, source, value);
const message = {
event: event,
source: source,
value: value
};
// Post the message to the parent window
window.parent.postMessage(message, '*');
console.log("post finish");
window.cur_process_step = "process";
return img;
}
function uploadImage(image, event, source, value) {
// Ensure we're in an iframe
if (window.cur_process_step != "process"){
return;
}
window.cur_process_step = "";
console.log("uploadImage", image ? image.url : null, event, source, value);
// Get the first image from the gallery (assuming it's an array)
let imageUrl = image ? image.url : null;
if (window.self !== window.top) {
// Post the message to the parent window
// Prepare the data to send
let data = {
event: event,
source: source,
value: imageUrl
};
window.parent.postMessage(data, '*');
} else if (isValidEnv()){
try{
sendCustomEventToDataLayer({},event,source,{"image":imageUrl})
} catch (error) {
console.error("Error in sendCustomEventToDataLayer:", error);
}
}else{
console.log("Not in an iframe, can't post to parent");
}
return;
}
window.onDemoLoad = function(x){
let envInfo = getEnvInfo();
console.log(envInfo);
if (isValidEnv()){
var element = document.getElementById("pitch_desc_html_code");
if (element) {
element.parentNode.removeChild(element);
}
}
return "";
}
</script>
'''
with gr.Blocks(head=js, theme="outsourceit2day/New_Theme") as demo:
width=240
height=340
with gr.Row(equal_height=False):
with gr.Column(min_width=240): # Adjust scale for proper sizing
image_input = gr.Image(type="numpy", label="", height=height)
title=title
gr.Examples(examples=examples, inputs=image_input, examples_per_page=10, elem_id="example_img")
process_button = gr.Button("Run", size="sm")
gr.Markdown("# Free Undress AI v.1.0")
gr.Markdown("Try 35 DeepNude Alternatives https://outsourceit.today/download-apps-like-deepnude-alternatives.")
gr.Markdown("Input photos of people, similar to the test picture at the bottom, and undress pictures will be produced. You may have to wait <b>40-60</b> seconds for a picture. π Do not upload personal photos π There is a queue system. According to the logic of first come, first served, only one picture will be made at a time. Must be able to see the outline of a human body at least!")
gr.HTML("<p style='color: blue;'>Another apps <a href='https://outsourceit.today/download-apps-like-deepnude-alternatives/'>here</a></p>")
def update_status(img):
processed_img = inference(img)
return processed_img
image_input.change(fn=lambda x: x, inputs=[image_input], outputs=[gr.State([])], js='''(img) => window.uploadImage(img, "process_finished", "demo_hf_deepnude_gan_card", "")''')
process_button.click(update_status, inputs=image_input, outputs=image_input, js='''(i) => window.postMessageToParent(i, "process_started", "demo_hf_deepnude_gan_card", "click_nude")''')
demo.load(fn=lambda x: x, inputs=[gr.State([])], outputs=[gr.State([])], js='''(x) => window.onDemoLoad(x)''')
demo.queue(max_size=10)
demo.launch() |