NimaKL commited on
Commit
a807fda
1 Parent(s): 303cf51

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -76
app.py DELETED
@@ -1,76 +0,0 @@
1
- import pandas as pd
2
- import numpy as np
3
- import tensorflow as tf
4
- from transformers.models.bert import BertTokenizer
5
- from transformers import TFBertModel
6
- import streamlit as st
7
- import pandas as pd
8
- from transformers import TFAutoModel
9
-
10
-
11
-
12
-
13
- hist_loss= [0.1971,0.0732,0.0465,0.0319,0.0232,0.0167,0.0127,0.0094,0.0073,0.0058,0.0049,0.0042]
14
- hist_acc = [0.9508,0.9811,0.9878,0.9914,0.9936,0.9954,0.9965,0.9973,0.9978,0.9983,0.9986,0.9988]
15
- hist_val_acc = [0.9804,0.9891,0.9927,0.9956,0.9981,0.998,0.9991,0.9997,0.9991,0.9998,0.9998,0.9998]
16
- hist_val_loss = [0.0759,0.0454,0.028,0.015,0.0063,0.0064,0.004,0.0011,0.0021,0.00064548,0.0010,0.00042896]
17
- Epochs = [i for i in range(1,13)]
18
-
19
- hist_loss[:] = [x * 100 for x in hist_loss]
20
- hist_acc[:] = [x * 100 for x in hist_acc]
21
- hist_val_acc[:] = [x * 100 for x in hist_val_acc]
22
- hist_val_loss[:] = [x * 100 for x in hist_val_loss]
23
- d = {'val_acc':hist_val_acc, 'acc':hist_acc,'loss':hist_loss, 'val_loss':hist_val_loss, 'Epochs': Epochs}
24
- chart_data = pd.DataFrame(d)
25
- chart_data.index = range(1,13)
26
-
27
- @st.cache(suppress_st_warning=True, allow_output_mutation=True)
28
- def load_model(show_spinner=True):
29
- yorum_model = TFAutoModel.from_pretrained("NimaKL/tc32_test")
30
- tokenizer = BertTokenizer.from_pretrained('NimaKL/tc32_test')
31
- return yorum_model, tokenizer
32
-
33
- st.set_page_config(layout='wide', initial_sidebar_state='expanded')
34
- col1, col2= st.columns(2)
35
- with col1:
36
- st.title("TC32 Multi-Class Text Classification")
37
- st.subheader('Model Loss and Accuracy')
38
- st.area_chart(chart_data)
39
- yorum_model, tokenizer = load_model()
40
-
41
-
42
- with col2:
43
- st.title("Sınıfı bulmak için bir şikayet girin.")
44
- st.subheader("Şikayet")
45
- text = st.text_area('', height=240)
46
- aButton = st.button('Ara')
47
-
48
- def prepare_data(input_text, tokenizer):
49
- token = tokenizer.encode_plus(
50
- input_text,
51
- max_length=256,
52
- truncation=True,
53
- padding='max_length',
54
- add_special_tokens=True,
55
- return_tensors='tf'
56
- )
57
- return {
58
- 'input_ids': tf.cast(token.input_ids, tf.float64),
59
- 'attention_mask': tf.cast(token.attention_mask, tf.float64)
60
- }
61
-
62
- def make_prediction(model, processed_data, classes=['Alışveriş','Anne-Bebek','Beyaz Eşya','Bilgisayar','Cep Telefonu','Eğitim','Elektronik','Emlak ve İnşaat','Enerji','Etkinlik ve Organizasyon','Finans','Gıda','Giyim','Hizmet','İçecek','İnternet','Kamu','Kargo-Nakliyat','Kozmetik','Küçük Ev Aletleri','Medya','Mekan ve Eğlence','Mobilya - Ev Tekstili','Mücevher Saat Gözlük','Mutfak Araç Gereç','Otomotiv','Sağlık','Sigorta','Spor','Temizlik','Turizm','Ulaşım']):
63
- probs = model.predict(processed_data)[0]
64
- return classes[np.argmax(probs)]
65
-
66
-
67
- if text or aButton:
68
- with col2:
69
- with st.spinner('Wait for it...'):
70
- processed_data = prepare_data(text, tokenizer)
71
- result = make_prediction(yorum_model, processed_data=processed_data)
72
- description = '<table style="border: collapse;"><tr><div style="height: 62px;"></div></tr><tr><p style="border-width: medium; border-color: #aa5e70; border-radius: 10px;padding-top: 1px;padding-left: 20px;background:#20212a;font-family:Courier New; color: white;font-size: 36px; font-weight: boldest;">'+result+'</p></tr><table>'
73
- st.markdown(description, unsafe_allow_html=True)
74
- with col1:
75
- st.success("Tahmin başarıyla tamamlandı!")
76
-