Custom_Yolov7 / app.py
owaiskha9654's picture
Update app.py
eaa6868
raw
history blame
1.46 kB
import torch
import os
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image
REPO_ID = "owaiskha9654/Yolov7_Custom_Object_Detection"
FILENAME = "best.pt"
print(os.getcwd())
yolov7_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
model = torch.hub.load('jinfagang/yolov7', 'custom', path=yolov7_weights, force_reload=False) # local repo
print(l_files)
def object_detection(im, size=416):
results = model(im) # inference
#results.print() # print results to screen
#results.show() # display results
#results.save() # save as results1.jpg, results2.jpg... etc.
results.render() # updates results.imgs with boxes and labels
return Image.fromarray(results.imgs[0])
title = "Identificação de Defeitos em Banana"
description = """Esse modelo é uma pequena demonstração baseada em uma análise de cerca de 60 imagens somente. Para resultados mais confiáveis e genéricos, são necessários mais exemplos (imagens).
"""
image = gr.inputs.Image(shape=(416, 416), image_mode="RGB", source="upload", label="Image", optional=False)
outputs = gr.outputs.Image(type="pil", label="Output Image")
gr.Interface(
fn=object_detection,
inputs=image,
outputs=outputs,
title=title,
description=description,
examples=[["sample_images/IMG_0125.JPG"], ["sample_images/IMG_0129.JPG"],
["sample_images/IMG_0157.JPG"], ["sample_images/IMG_0158.JPG"]],
).launch()