Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,746 Bytes
70f55b7 e47ff0d f8868b5 70f55b7 5e4176a 70f55b7 5e4176a ff84eba e47ff0d 70f55b7 f8868b5 e47ff0d a5f564c 5e4176a e47ff0d 075e529 940a541 075e529 940a541 9b35070 075e529 29c745d 9b35070 075e529 5e4176a e47ff0d 6ea233e e47ff0d a4bee0b 6ea233e e47ff0d a4bee0b e47ff0d 075e529 e47ff0d 5e4176a 1b970c4 5e4176a 72d34e5 5e4176a e47ff0d f8868b5 70f55b7 940a541 70f55b7 940a541 6ea233e 940a541 70f55b7 940a541 6ea233e 940a541 70f55b7 940a541 70f55b7 e47ff0d 6ea233e e47ff0d 6ea233e a4bee0b e47ff0d 70f55b7 f8868b5 e47ff0d a4bee0b e47ff0d 075e529 e47ff0d 6ea233e 70f55b7 e47ff0d 6ea233e 70f55b7 6ea233e 5b39efd d2ab76c a4bee0b e47ff0d 6ea233e a4bee0b 6ea233e 70f55b7 e47ff0d 70f55b7 e47ff0d f8868b5 e47ff0d 70f55b7 6ea233e 70f55b7 e47ff0d a4bee0b e47ff0d 075e529 e47ff0d f8868b5 c44fbfc 807f489 c44fbfc e47ff0d f8868b5 6ea233e 807f489 e47ff0d 807f489 f8868b5 e47ff0d 075e529 e47ff0d f8868b5 70f55b7 ff84eba 6ea233e 70f55b7 f8868b5 ff84eba 6ea233e f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 6d961c4 f8868b5 c38e04c 6d961c4 f8868b5 e47ff0d f8868b5 6d961c4 f8868b5 c38e04c 6d961c4 f8868b5 e47ff0d f8868b5 e47ff0d f8868b5 e47ff0d 6ea233e f8868b5 e47ff0d f8868b5 ff84eba d54903b f8868b5 d54903b f8868b5 e47ff0d f8868b5 e47ff0d a4bee0b e47ff0d 6ea233e 70f55b7 e47ff0d f8868b5 075e529 f8868b5 e47ff0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import spaces
import os
import random
import math
import torch
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
import numpy as np
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
StableDiffusionXLPipeline,
)
from diffusers.schedulers.scheduling_euler_ancestral_discrete import (
EulerAncestralDiscreteScheduler,
)
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
try:
from dotenv import load_dotenv
load_dotenv()
except:
print("failed to import dotenv (this is not a problem on the production)")
HF_TOKEN = os.environ.get("HF_TOKEN")
assert HF_TOKEN is not None
IMAGE_MODEL_REPO_ID = os.environ.get(
"IMAGE_MODEL_REPO_ID", "OnomaAIResearch/Illustrious-xl-early-release-v0"
)
DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None)
assert DART_V3_REPO_ID is not None
CPU_OFFLOAD = os.environ.get("CPU_OFFLOAD", "False").lower() == "true"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
TEMPLATE = (
"<|bos|>"
#
"<|rating:general|>"
"{aspect_ratio}"
"<|length:medium|>"
#
"<copyright></copyright>"
#
"<character></character>"
#
"<general>{subject}"
)
QUALITY_TAGS = ""
NEGATIVE_PROMPT = "bad quality, worst quality, lowres, bad anatomy, sketch, jpeg artifacts, ugly, poorly drawn, signature, watermark, bad anatomy, bad hands, bad feet, retro, old, 2000s, 2010s, 2011s, 2012s, 2013s, multiple views, screencap"
BAN_TAGS = [
"2005", # year tags
"2006",
"2007",
"2008",
"2009",
"2010",
"2011",
"2012",
"2013",
"2014",
"2015",
"2016",
"2017",
"2018",
"2019",
"2020",
"dated",
"web address",
]
device = "cuda" if torch.cuda.is_available() else "cpu"
dart = AutoModelForCausalLM.from_pretrained(
DART_V3_REPO_ID,
torch_dtype=torch.bfloat16,
token=HF_TOKEN,
use_cache=True,
device_map="cpu",
)
dart = dart.eval()
dart = dart.requires_grad_(False)
dart = torch.compile(dart)
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
BAN_TOKENS = [tokenizer.convert_tokens_to_ids([tag]) for tag in BAN_TAGS]
def load_pipeline():
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16,
)
pipe = StableDiffusionXLPipeline.from_pretrained(
IMAGE_MODEL_REPO_ID,
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
add_watermarker=False,
custom_pipeline="lpw_stable_diffusion_xl",
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
if CPU_OFFLOAD: # local
pipe.enable_sequential_cpu_offload(gpu_id=0, device=device)
else:
pipe.to(device) # for spaces
return pipe
if torch.cuda.is_available():
pipe = load_pipeline()
print("Loaded pipeline")
else:
pipe = None
def get_aspect_ratio(width: int, height: int) -> str:
ar = math.log2(width / height)
if ar <= -1.25:
return "<|aspect_ratio:too_tall|>"
elif ar <= -0.75:
return "<|aspect_ratio:tall_wallpaper|>"
elif ar <= -0.25:
return "<|aspect_ratio:tall|>"
elif ar < 0.25:
return "<|aspect_ratio:square|>"
elif ar < 0.75:
return "<|aspect_ratio:wide|>"
elif ar < 1.25:
return "<|aspect_ratio:wide_wallpaper|>"
else:
return "<|aspect_ratio:too_wide|>"
@torch.inference_mode
def generate_prompt(subject: str, aspect_ratio: str):
input_ids = tokenizer.encode_plus(
TEMPLATE.format(aspect_ratio=aspect_ratio, subject=subject),
return_tensors="pt",
).input_ids
print("input_ids:", input_ids)
output_ids = dart.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=1.0,
top_p=1.0,
top_k=100,
num_beams=1,
bad_words_ids=BAN_TOKENS,
)[0]
generated = output_ids[len(input_ids) :]
decoded = ", ".join(
[
token
for token in tokenizer.batch_decode(generated, skip_special_tokens=True)
if token.strip() != ""
]
)
print("decoded:", decoded)
return decoded
def format_prompt(prompt: str, prompt_suffix: str):
return f"{prompt}, {prompt_suffix}"
@spaces.GPU(duration=20)
@torch.inference_mode
def generate_image(
prompt: str,
negative_prompt: str,
generator,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
):
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
def on_generate(
subject: str,
suffix: str,
negative_prompt: str,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
ar = get_aspect_ratio(width, height)
print("ar:", ar)
prompt = generate_prompt(subject, ar)
prompt = format_prompt(prompt, suffix)
print(prompt)
image = generate_image(
prompt,
negative_prompt,
generator,
width,
height,
guidance_scale,
num_inference_steps,
)
return image, prompt, seed
def on_retry(
prompt: str,
negative_prompt: str,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
print(prompt)
image = generate_image(
prompt,
negative_prompt,
generator,
width,
height,
guidance_scale,
num_inference_steps,
)
return image, prompt, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# IllustriousXL Random Gacha
Image model: [IllustriousXL v0.1](https://huggingface.co/OnomaAIResearch/Illustrious-xl-early-release-v0)
""")
with gr.Row():
subject_radio = gr.Dropdown(
label="Subject",
choices=["1girl", "2girls", "1boy", "no humans"],
value="1girl",
)
run_button = gr.Button("Pull gacha", variant="primary", scale=0)
result = gr.Image(label="Gacha result", show_label=False)
with gr.Accordion("Generation details", open=False):
with gr.Row():
prompt_txt = gr.Textbox(label="Generated prompt", interactive=False)
retry_button = gr.Button("π Retry", scale=0)
with gr.Accordion("Advanced Settings", open=False):
prompt_suffix = gr.Text(
label="Prompt suffix",
visible=True,
value=QUALITY_TAGS,
)
negative_prompt = gr.Text(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value=NEGATIVE_PROMPT,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=640,
maximum=MAX_IMAGE_SIZE,
step=64,
value=960, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=640,
maximum=MAX_IMAGE_SIZE,
step=64,
value=1344, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=6.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=20,
maximum=40,
step=1,
value=28,
)
gr.on(
triggers=[run_button.click],
fn=on_generate,
inputs=[
subject_radio,
prompt_suffix,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, prompt_txt, seed],
)
gr.on(
triggers=[retry_button.click],
fn=on_retry,
inputs=[
prompt_txt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, prompt_txt, seed],
)
demo.queue().launch()
|