File size: 30,629 Bytes
6e27413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
import warnings
from typing import Any, Callable, Dict, List, Optional, Union

import PIL
import torch
import torchvision.transforms.functional as TF
from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.modeling_utils import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import (
    StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import deprecate, is_accelerate_available, logging
from diffusers.utils.torch_utils import randn_tensor
from packaging import version
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class CLIPCameraProjection(ModelMixin, ConfigMixin):
    """
    A Projection layer for CLIP embedding and camera embedding.

    Parameters:
        embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed`
        additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
            projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
            additional_embeddings`.
    """

    @register_to_config
    def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.additional_embeddings = additional_embeddings

        self.input_dim = self.embedding_dim + self.additional_embeddings
        self.output_dim = self.embedding_dim

        self.proj = torch.nn.Linear(self.input_dim, self.output_dim)

    def forward(
        self,
        embedding: torch.FloatTensor,
    ):
        """
        The [`PriorTransformer`] forward method.

        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`):
                The currently input embeddings.

        Returns:
            The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`).
        """
        proj_embedding = self.proj(embedding)
        return proj_embedding


class Zero123Pipeline(DiffusionPipeline):
    r"""
    Pipeline to generate variations from an input image using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        image_encoder ([`CLIPVisionModelWithProjection`]):
            Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
            specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
        feature_extractor ([`CLIPImageProcessor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
    # TODO: feature_extractor is required to encode images (if they are in PIL format),
    # we should give a descriptive message if the pipeline doesn't have one.
    _optional_components = ["safety_checker"]

    def __init__(
        self,
        vae: AutoencoderKL,
        image_encoder: CLIPVisionModelWithProjection,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        clip_camera_projection: CLIPCameraProjection,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warn(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        is_unet_version_less_0_9_0 = hasattr(
            unet.config, "_diffusers_version"
        ) and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse(
            "0.9.0.dev0"
        )
        is_unet_sample_size_less_64 = (
            hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        )
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate(
                "sample_size<64", "1.0.0", deprecation_message, standard_warn=False
            )
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            image_encoder=image_encoder,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            clip_camera_projection=clip_camera_projection,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device(f"cuda:{gpu_id}")

        for cpu_offloaded_model in [
            self.unet,
            self.image_encoder,
            self.vae,
            self.safety_checker,
        ]:
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)

    @property
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _encode_image(
        self,
        image,
        elevation,
        azimuth,
        distance,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        clip_image_embeddings=None,
        image_camera_embeddings=None,
    ):
        dtype = next(self.image_encoder.parameters()).dtype

        if image_camera_embeddings is None:
            if image is None:
                assert clip_image_embeddings is not None
                image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype)
            else:
                if not isinstance(image, torch.Tensor):
                    image = self.feature_extractor(
                        images=image, return_tensors="pt"
                    ).pixel_values

                image = image.to(device=device, dtype=dtype)
                image_embeddings = self.image_encoder(image).image_embeds
                image_embeddings = image_embeddings.unsqueeze(1)

            bs_embed, seq_len, _ = image_embeddings.shape

            if isinstance(elevation, float):
                elevation = torch.as_tensor(
                    [elevation] * bs_embed, dtype=dtype, device=device
                )
            if isinstance(azimuth, float):
                azimuth = torch.as_tensor(
                    [azimuth] * bs_embed, dtype=dtype, device=device
                )
            if isinstance(distance, float):
                distance = torch.as_tensor(
                    [distance] * bs_embed, dtype=dtype, device=device
                )

            camera_embeddings = torch.stack(
                [
                    torch.deg2rad(elevation),
                    torch.sin(torch.deg2rad(azimuth)),
                    torch.cos(torch.deg2rad(azimuth)),
                    distance,
                ],
                dim=-1,
            )[:, None, :]

            image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1)

            # project (image, camera) embeddings to the same dimension as clip embeddings
            image_embeddings = self.clip_camera_projection(image_embeddings)
        else:
            image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype)
            bs_embed, seq_len, _ = image_embeddings.shape

        # duplicate image embeddings for each generation per prompt, using mps friendly method
        image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
        image_embeddings = image_embeddings.view(
            bs_embed * num_images_per_prompt, seq_len, -1
        )

        if do_classifier_free_guidance:
            negative_prompt_embeds = torch.zeros_like(image_embeddings)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])

        return image_embeddings

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(
                    image, output_type="pil"
                )
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(
                feature_extractor_input, return_tensors="pt"
            ).to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
        warnings.warn(
            "The decode_latents method is deprecated and will be removed in a future version. Please"
            " use VaeImageProcessor instead",
            FutureWarning,
        )
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, image, height, width, callback_steps):
        # TODO: check image size or adjust image size to (height, width)

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
            )

        if (callback_steps is None) or (
            callback_steps is not None
            and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype
            )
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def _get_latent_model_input(
        self,
        latents: torch.FloatTensor,
        image: Optional[
            Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
        ],
        num_images_per_prompt: int,
        do_classifier_free_guidance: bool,
        image_latents: Optional[torch.FloatTensor] = None,
    ):
        if isinstance(image, PIL.Image.Image):
            image_pt = TF.to_tensor(image).unsqueeze(0).to(latents)
        elif isinstance(image, list):
            image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to(
                latents
            )
        elif isinstance(image, torch.Tensor):
            image_pt = image
        else:
            image_pt = None

        if image_pt is None:
            assert image_latents is not None
            image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0)
        else:
            image_pt = image_pt * 2.0 - 1.0  # scale to [-1, 1]
            # FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor
            # but zero123 was not trained this way
            image_pt = self.vae.encode(image_pt).latent_dist.mode()
            image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0)
        if do_classifier_free_guidance:
            latent_model_input = torch.cat(
                [
                    torch.cat([latents, latents], dim=0),
                    torch.cat([torch.zeros_like(image_pt), image_pt], dim=0),
                ],
                dim=1,
            )
        else:
            latent_model_input = torch.cat([latents, image_pt], dim=1)

        return latent_model_input

    @torch.no_grad()
    def __call__(
        self,
        image: Optional[
            Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
        ] = None,
        elevation: Optional[Union[float, torch.FloatTensor]] = None,
        azimuth: Optional[Union[float, torch.FloatTensor]] = None,
        distance: Optional[Union[float, torch.FloatTensor]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 3.0,
        num_images_per_prompt: int = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        clip_image_embeddings: Optional[torch.FloatTensor] = None,
        image_camera_embeddings: Optional[torch.FloatTensor] = None,
        image_latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
                The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
                configuration of
                [this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
                `CLIPImageProcessor`
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        # TODO: check input elevation, azimuth, and distance
        # TODO: check image, clip_image_embeddings, image_latents
        self.check_inputs(image, height, width, callback_steps)

        # 2. Define call parameters
        if isinstance(image, PIL.Image.Image):
            batch_size = 1
        elif isinstance(image, list):
            batch_size = len(image)
        elif isinstance(image, torch.Tensor):
            batch_size = image.shape[0]
        else:
            assert image_latents is not None
            assert (
                clip_image_embeddings is not None or image_camera_embeddings is not None
            )
            batch_size = image_latents.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input image
        if isinstance(image, PIL.Image.Image) or isinstance(image, list):
            pil_image = image
        elif isinstance(image, torch.Tensor):
            pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
        else:
            pil_image = None
        image_embeddings = self._encode_image(
            pil_image,
            elevation,
            azimuth,
            distance,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            clip_image_embeddings,
            image_camera_embeddings,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        # num_channels_latents = self.unet.config.in_channels
        num_channels_latents = 4  # FIXME: hard-coded
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            image_embeddings.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = self._get_latent_model_input(
                    latents,
                    image,
                    num_images_per_prompt,
                    do_classifier_free_guidance,
                    image_latents,
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=image_embeddings,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs
                ).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(
                latents / self.vae.config.scaling_factor, return_dict=False
            )[0]
            image, has_nsfw_concept = self.run_safety_checker(
                image, device, image_embeddings.dtype
            )
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(
            image, output_type=output_type, do_denormalize=do_denormalize
        )

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(
            images=image, nsfw_content_detected=has_nsfw_concept
        )