pablodawson's picture
Update app.py
6832a6e
import gradio as gr
import torch
from diffuserslocal.src.diffusers import UNet2DConditionModel
from share_btn import community_icon_html, loading_icon_html, share_js
from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
from PIL import Image
import numpy as np
import cv2
from functools import partial
import tempfile
from mesh import get_mesh
device = "cuda" if torch.cuda.is_available() else "cpu"
model_arch = "zoe"
# Inpainting pipeline
unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet")
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)
# Depth estimation
model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
#model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
#model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed)
if model_arch == "midas":
midas = torch.hub.load("intel-isl/MiDaS", model_type)
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
def estimate_depth(image):
input_batch = transform(image).to(device)
with torch.no_grad():
prediction = midas(input_batch)
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=image.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
output = prediction.cpu().numpy()
output= 65535 * (output - np.min(output))/(np.max(output) - np.min(output))
return Image.fromarray(output.astype("int32")), output.min(), output.max()
elif model_arch == "zoe":
# Zoe_N
repo = "isl-org/ZoeDepth"
model_zoe_n = torch.hub.load(repo, "ZoeD_N", pretrained=True)
zoe = model_zoe_n.to(device)
def estimate_depth(image):
depth_tensor = zoe.infer_pil(image, output_type="tensor")
output = depth_tensor.cpu().numpy()
output_ = 65535 * (1 - (output - np.min(output))/(np.max(output) - np.min(output)))
return Image.fromarray(output_.astype("int32")), output.min(), output.max()
def denormalize(image, min, max):
image = (image / 65535 - 1 ) * (min - max) + min
return image
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def predict_images(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
if negative_prompt == "":
negative_prompt = None
og_size = (dict["image"].shape[1], dict["image"].shape[0])
init_image = cv2.resize(dict["image"], (512, 512))
mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
if (depth is None):
depth_image, _, _ = estimate_depth(init_image)
else:
d_i = depth[:,:,0]
depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
depth_image = depth_image.astype("int32")
depth_image = Image.fromarray(depth_image)
init_image = Image.fromarray(init_image.astype("uint8"))
depth_image = depth_image.resize((512, 512))
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
depth_out = np.array(output.depth[0])
output_depth_vis = (depth_out - np.min(depth_out)) / (np.max(depth_out) - np.min(depth_out)) * 255
output_depth_vis = output_depth_vis.astype("uint8")
output_depth = Image.fromarray(output_depth_vis)
return output.rgb[0].resize(og_size), output_depth.resize(og_size), gr.update(visible=True)
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
def create_vis_demo():
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
btn = gr.Button("Inpaint!", elem_id="run_button")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(mobile_collapse=False, equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
with gr.Row(mobile_collapse=False, equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400)
with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
btn.click(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run')
prompt.submit(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container])
share_button.click(None, [], [], _js=share_js)
def predict_images_3d(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler", keep_edges=False):
if negative_prompt == "":
negative_prompt = None
og_size = (dict["image"].shape[1], dict["image"].shape[0])
init_image = cv2.resize(dict["image"], (512, 512))
mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
mask.save("temp_mask.jpg")
if (depth is None):
depth_image, min, max = estimate_depth(init_image)
else:
d_i = depth[:,:,0]
depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i))
depth_image = depth_image.astype("int32")
depth_image = Image.fromarray(depth_image)
init_image = Image.fromarray(init_image.astype("uint8"))
depth_image = depth_image.resize((512, 512))
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
# resize to original size
#depth_image = depth_image.resize(og_size)
#output_depth = output.depth[0].resize(og_size)
depth_in = denormalize(np.array(depth_image), min, max)
depth_out = denormalize(np.array(output.depth[0]), min, max)
output_image = output.rgb[0]
input_mesh = get_mesh(depth_in,init_image, keep_edges=keep_edges)
output_mesh = get_mesh(depth_out, output_image, keep_edges=keep_edges)
return input_mesh, output_mesh, gr.update(visible=True)
def create_3d_demo():
gr.Markdown("### Image to 3D mesh")
with gr.Row():
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400, shape=(512,512))
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400, shape=(512,512))
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False)
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(mobile_collapse=False, equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
with gr.Row(mobile_collapse=False, equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
with gr.Row() as share_btn_container:
with gr.Column():
result_og = gr.Model3D(label="original 3d reconstruction", clear_color=[
1.0, 1.0, 1.0, 1.0])
result_new = gr.Model3D(label="inpainted 3d reconstruction", clear_color=[
1.0, 1.0, 1.0, 1.0])
submit = gr.Button("Submit")
submit.click(fn=predict_images_3d, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler, checkbox], outputs=[result_og, result_new, share_btn_container], api_name='run')
with image_blocks as demo:
with gr.Tab("Image", default=True):
create_vis_demo()
with gr.Tab("3D"):
create_3d_demo()
gr.HTML(read_content("header.html"))
image_blocks.queue(max_size=25).launch()