pablo commited on
Commit
d70699a
1 Parent(s): c013629

directamente

Browse files
Files changed (1) hide show
  1. app.py +6 -8
app.py CHANGED
@@ -7,6 +7,7 @@ from share_btn import community_icon_html, loading_icon_html, share_js
7
  from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
8
  from PIL import Image
9
  import numpy as np
 
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
@@ -35,7 +36,6 @@ else:
35
 
36
  def estimate_depth(image):
37
 
38
- image = np.array(image)
39
  input_batch = transform(image).to(device)
40
 
41
  with torch.no_grad():
@@ -68,17 +68,17 @@ def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, step
68
  negative_prompt = None
69
  scheduler_class_name = scheduler.split("-")[0]
70
 
71
- init_image = dict["image"].convert("RGB").resize((512, 512))
72
 
73
  if (depth == None):
74
  depth_image = estimate_depth(init_image)
75
  else:
76
- depth_image = depth.convert("L")
77
 
78
  scheduler = getattr(diffusers, scheduler_class_name)
79
  pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
80
 
81
- mask = dict["mask"].convert("RGB").resize((512, 512))
82
  depth_image = depth_image.resize((512, 512))
83
 
84
  output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
@@ -128,10 +128,8 @@ with image_blocks as demo:
128
  gr.HTML(read_content("header.html"))
129
  with gr.Row():
130
  with gr.Column():
131
- image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400)
132
- depth = gr.Image(source='upload', elem_id="depth_upload", type="pil", label="Upload",height=400, image_mode="L")
133
-
134
- print(depth)
135
 
136
  with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
137
  with gr.Row():
 
7
  from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline
8
  from PIL import Image
9
  import numpy as np
10
+ import cv2
11
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
 
 
36
 
37
  def estimate_depth(image):
38
 
 
39
  input_batch = transform(image).to(device)
40
 
41
  with torch.no_grad():
 
68
  negative_prompt = None
69
  scheduler_class_name = scheduler.split("-")[0]
70
 
71
+ init_image = cv2.resize(dict["image"], (512, 512))
72
 
73
  if (depth == None):
74
  depth_image = estimate_depth(init_image)
75
  else:
76
+ depth_image = depth
77
 
78
  scheduler = getattr(diffusers, scheduler_class_name)
79
  pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
80
 
81
+ mask = cv2.resize(dict["mask"], (512, 512))
82
  depth_image = depth_image.resize((512, 512))
83
 
84
  output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
 
128
  gr.HTML(read_content("header.html"))
129
  with gr.Row():
130
  with gr.Column():
131
+ image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400)
132
+ depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400)
 
 
133
 
134
  with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
135
  with gr.Row():