File size: 23,475 Bytes
899c526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

#include "lietorch_cpu.h"
#include <Eigen/Dense>

#include <iostream>
#include "common.h"
#include "dispatch.h"

#include "so3.h"
#include "rxso3.h"
#include "se3.h"
#include "sim3.h"


template <typename Group, typename scalar_t>
void exp_forward_kernel(const scalar_t* a_ptr, scalar_t* X_ptr, int batch_size) {
    // exponential map forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;
    
    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Tangent a(a_ptr + i*Group::K);
            Eigen::Map<Data>(X_ptr + i*Group::N) = Group::Exp(a).data();
        }
    });
}

template <typename Group, typename scalar_t>
void exp_backward_kernel(const scalar_t* grad, const scalar_t* a_ptr, scalar_t* da, int batch_size) {
    // exponential map backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Tangent a(a_ptr + i*Group::K);
            Grad dX(grad + i*Group::N);
            Eigen::Map<Grad>(da + i*Group::K) = dX * Group::left_jacobian(a);
        }
    });
}

template <typename Group, typename scalar_t>
void log_forward_kernel(const scalar_t* X_ptr, scalar_t* a_ptr, int batch_size) {
    // logarithm map forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Tangent a = Group(X_ptr + i*Group::N).Log();
            Eigen::Map<Tangent>(a_ptr + i*Group::K) = a;
        }
    });
}

template <typename Group, typename scalar_t>
void log_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, scalar_t* dX, int batch_size) {
    // logarithm map backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Tangent a = Group(X_ptr + i*Group::N).Log();
            Grad da(grad + i*Group::K);
            Eigen::Map<Grad>(dX + i*Group::N) = da * Group::left_jacobian_inverse(a);
        }
    });
}

template <typename Group, typename scalar_t>
void inv_forward_kernel(const scalar_t* X_ptr, scalar_t* Y_ptr, int batch_size) {
    // group inverse forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Eigen::Map<Data>(Y_ptr + i*Group::N) = X.inv().data();
        }
    });
}

template <typename Group, typename scalar_t>
void inv_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, scalar_t *dX, int batch_size) {
    // group inverse backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group Y = Group(X_ptr + i*Group::N).inv();
            Grad dY(grad + i*Group::N);
            Eigen::Map<Grad>(dX + i*Group::N) = -dY * Y.Adj();
        }
    });
}

template <typename Group, typename scalar_t>
void mul_forward_kernel(const scalar_t* X_ptr, const scalar_t* Y_ptr, scalar_t* Z_ptr, int batch_size) {
    // group multiplication forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group Z = Group(X_ptr + i*Group::N) * Group(Y_ptr + i*Group::N);
            Eigen::Map<Data>(Z_ptr + i*Group::N) = Z.data();
        }
    });
}

template <class Group, typename scalar_t>
void mul_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, const scalar_t* Y_ptr, scalar_t* dX, scalar_t* dY, int batch_size) {
    // group multiplication backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Grad dZ(grad + i*Group::N);
            Group X(X_ptr + i*Group::N);        
            Eigen::Map<Grad>(dX + i*Group::N) = dZ;
            Eigen::Map<Grad>(dY + i*Group::N) = dZ * X.Adj();
        }
    });
}

template <typename Group, typename scalar_t>
void adj_forward_kernel(const scalar_t* X_ptr, const scalar_t* a_ptr, scalar_t* b_ptr, int batch_size) {
    // adjoint forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Tangent a(a_ptr + i*Group::K);
            Eigen::Map<Tangent>(b_ptr + i*Group::K) = X.Adj(a);
        }
    });
}

template <typename Group, typename scalar_t>
void adj_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, const scalar_t* a_ptr, scalar_t* dX, scalar_t* da, int batch_size) {
    // adjoint backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Grad db(grad + i*Group::K);

            Tangent a(a_ptr + i*Group::K);
            Tangent b = X.Adj() * a;

            Eigen::Map<Grad>(da + i*Group::K) = db * X.Adj();
            Eigen::Map<Grad>(dX + i*Group::N) = -db * Group::adj(b);
        }
    });
}

template <typename Group, typename scalar_t>
void adjT_forward_kernel(const scalar_t* X_ptr, const scalar_t* a_ptr, scalar_t* b_ptr, int batch_size) {
    // adjoint forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Tangent a(a_ptr + i*Group::K);
            Eigen::Map<Tangent>(b_ptr + i*Group::K) = X.AdjT(a);
        }
    });
}

template <typename Group, typename scalar_t>
void adjT_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, const scalar_t* a_ptr, scalar_t* dX, scalar_t* da, int batch_size) {
    // adjoint backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);        
            Tangent db(grad + i*Group::K);
            Grad a(a_ptr + i*Group::K);

            Eigen::Map<Tangent>(da + i*Group::K) = X.Adj(db);
            Eigen::Map<Grad>(dX + i*Group::N) = -a * Group::adj(X.Adj(db));
        }
    });
}


template <typename Group, typename scalar_t>
void act_forward_kernel(const scalar_t* X_ptr, const scalar_t* p_ptr, scalar_t* q_ptr, int batch_size) {
    // action on point forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;
    using Point = Eigen::Matrix<scalar_t,3,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Point p(p_ptr + i*3);
            Eigen::Map<Point>(q_ptr + i*3) = X * p;
        }
    });
}

template <typename Group, typename scalar_t>
void act_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, const scalar_t* p_ptr, scalar_t* dX, scalar_t* dp, int batch_size) {
    // adjoint backward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;
    using Point = Eigen::Matrix<scalar_t,3,1>;
    using PointGrad = Eigen::Matrix<scalar_t,1,3>;
    using Transformation = Eigen::Matrix<scalar_t,4,4>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Point p(p_ptr + i*3);
            PointGrad dq(grad + i*3);

            Eigen::Map<PointGrad>(dp + i*3) = dq * X.Matrix().template block<3,3>(0,0);
            Eigen::Map<Grad>(dX + i*Group::N) = dq * Group::act_jacobian(X*p);
        }
    });
}


// template <typename Group, typename scalar_t>
// void tovec_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, scalar_t* dX, int batch_size) {
//     // group inverse forward kernel
//     using Data = Eigen::Matrix<scalar_t,Group::N,1>;
//     using Grad = Eigen::Matrix<scalar_t,1,Group::N>;

//     at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
//         for (int64_t i=start; i<end; i++) {
//             Group X(X_ptr + i*Group::N);
//             Grad g(grad + i*Group::N);
//             Eigen::Map<Grad>(dX + i*Group::N) = g * X.vec_jacobian();
//         }
//     });
// }

// template <typename Group, typename scalar_t>
// void fromvec_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, scalar_t* dX, int batch_size) {
//     // group inverse forward kernel
//     using Data = Eigen::Matrix<scalar_t,Group::N,1>;
//     using Grad = Eigen::Matrix<scalar_t,1,Group::N>;

//     at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
//         for (int64_t i=start; i<end; i++) {
//             Group X(X_ptr + i*Group::N);
//             Grad g(grad + i*Group::N);
//             Eigen::Map<Grad>(dX + i*Group::N) = g * X.vec_jacobian();
//         }
//     });
// }


template <typename Group, typename scalar_t>
void act4_forward_kernel(const scalar_t* X_ptr, const scalar_t* p_ptr, scalar_t* q_ptr, int batch_size) {
    // action on homogeneous point forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;
    using Point = Eigen::Matrix<scalar_t,4,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Point p(p_ptr + i*4);
            Eigen::Map<Point>(q_ptr + i*4) = X.act4(p);
        }
    });
}

template <typename Group, typename scalar_t>
void act4_backward_kernel(const scalar_t* grad, const scalar_t* X_ptr, const scalar_t* p_ptr, scalar_t* dX, scalar_t* dp, int batch_size) {
    // action on homogeneous point backward kernel

    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Grad = Eigen::Matrix<scalar_t,1,Group::K>;
    using Point = Eigen::Matrix<scalar_t,4,1>;
    using PointGrad = Eigen::Matrix<scalar_t,1,4>;
    using Transformation = Eigen::Matrix<scalar_t,4,4>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Point p(p_ptr + i*4);
            PointGrad dq(grad + i*4);

            Eigen::Map<PointGrad>(dp + i*4) = dq * X.Matrix4x4();
            const Point q = X.act4(p);
            Eigen::Map<Grad>(dX + i*Group::N) = dq * Group::act4_jacobian(q);
        }
    });
}

template <typename Group, typename scalar_t>
void as_matrix_forward_kernel(const scalar_t* X_ptr, scalar_t* T_ptr, int batch_size) {
    // group inverse forward kernel
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;
    using Matrix4 = Eigen::Matrix<scalar_t,4,4,Eigen::RowMajor>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Eigen::Map<Matrix4>(T_ptr + i*16) = X.Matrix4x4();
        }
    });
}

template <typename Group, typename scalar_t>
void orthogonal_projector_kernel(const scalar_t* X_ptr, scalar_t* P_ptr, int batch_size) {
    // group inverse forward kernel
    using Proj = Eigen::Matrix<scalar_t,Group::N,Group::N,Eigen::RowMajor>;
    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Eigen::Map<Proj>(P_ptr + i*Group::N*Group::N) = X.orthogonal_projector();
        }
    });
}

template <typename Group, typename scalar_t>
void jleft_forward_kernel(const scalar_t* X_ptr, const scalar_t* a_ptr, scalar_t* b_ptr, int batch_size) {
    // left-jacobian inverse action
    using Tangent = Eigen::Matrix<scalar_t,Group::K,1>;
    using Data = Eigen::Matrix<scalar_t,Group::N,1>;

    at::parallel_for(0, batch_size, 1, [&](int64_t start, int64_t end) {
        for (int64_t i=start; i<end; i++) {
            Group X(X_ptr + i*Group::N);
            Tangent a(a_ptr + i*Group::K);
            Tangent b = Group::left_jacobian_inverse(X.Log()) * a;
            Eigen::Map<Tangent>(b_ptr + i*Group::K) = b;
        }
    });
}

// unary operations

torch::Tensor exp_forward_cpu(int group_id, torch::Tensor a) {
    int batch_size = a.size(0);
    torch::Tensor X;

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, a.type(), "exp_forward_kernel", ([&] {
        X = torch::zeros({batch_size, group_t::N}, a.options());
        exp_forward_kernel<group_t, scalar_t>(
            a.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return X;
}

std::vector<torch::Tensor> exp_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor a) {
    int batch_size = a.size(0);
    torch::Tensor da = torch::zeros(a.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, a.type(), "exp_backward_kernel", ([&] {
        exp_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            da.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {da};
}

torch::Tensor log_forward_cpu(int group_id, torch::Tensor X) {
    int batch_size = X.size(0);
    torch::Tensor a;

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "log_forward_kernel", ([&] {
        a = torch::zeros({batch_size, group_t::K}, X.options());
        log_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return a;
}

std::vector<torch::Tensor> log_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "log_backward_kernel", ([&] {
        log_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX};
}

torch::Tensor inv_forward_cpu(int group_id, torch::Tensor X) {
    int batch_size = X.size(0);
    torch::Tensor Y = torch::zeros_like(X);

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "inv_forward_kernel", ([&] {
        inv_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            Y.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return Y;
}

std::vector<torch::Tensor> inv_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "inv_backward_kernel", ([&] {
        inv_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX};
}

// binary operations
torch::Tensor mul_forward_cpu(int group_id, torch::Tensor X, torch::Tensor Y) {
    int batch_size = X.size(0);
    torch::Tensor Z = torch::zeros_like(X);

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "mul_forward_kernel", ([&] {
        mul_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            Y.data_ptr<scalar_t>(), 
            Z.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return Z;
}

std::vector<torch::Tensor> mul_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X, torch::Tensor Y) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());
    torch::Tensor dY = torch::zeros(Y.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "mul_backward_kernel", ([&] {
        mul_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            Y.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            dY.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX, dY};
}

torch::Tensor adj_forward_cpu(int group_id, torch::Tensor X, torch::Tensor a) {
    int batch_size = X.size(0);
    torch::Tensor b = torch::zeros(a.sizes(), a.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "adj_forward_kernel", ([&] {
        adj_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            b.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return b;
}

std::vector<torch::Tensor> adj_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X, torch::Tensor a) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());
    torch::Tensor da = torch::zeros(a.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "adj_backward_kernel", ([&] {
        adj_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            da.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX, da};
}


torch::Tensor adjT_forward_cpu(int group_id, torch::Tensor X, torch::Tensor a) {
    int batch_size = X.size(0);
    torch::Tensor b = torch::zeros(a.sizes(), a.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "adjT_forward_kernel", ([&] {
        adjT_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            b.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return b;
}

std::vector<torch::Tensor> adjT_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X, torch::Tensor a) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());
    torch::Tensor da = torch::zeros(a.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "adjT_backward_kernel", ([&] {
        adjT_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            da.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX, da};
}


torch::Tensor act_forward_cpu(int group_id, torch::Tensor X, torch::Tensor p) {
    int batch_size = X.size(0);
    torch::Tensor q = torch::zeros(p.sizes(), p.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "act_forward_kernel", ([&] {
        act_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            p.data_ptr<scalar_t>(), 
            q.data_ptr<scalar_t>(),
            batch_size);
    }));

    return q;
}

std::vector<torch::Tensor> act_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X, torch::Tensor p) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());
    torch::Tensor dp = torch::zeros(p.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "act_backward_kernel", ([&] {
        act_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            p.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            dp.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX, dp};
}


torch::Tensor act4_forward_cpu(int group_id, torch::Tensor X, torch::Tensor p) {
    int batch_size = X.size(0);
    torch::Tensor q = torch::zeros(p.sizes(), p.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "act4_forward_kernel", ([&] {
        act4_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            p.data_ptr<scalar_t>(), 
            q.data_ptr<scalar_t>(),
            batch_size);
    }));

    return q;
}

std::vector<torch::Tensor> act4_backward_cpu(int group_id, torch::Tensor grad, torch::Tensor X, torch::Tensor p) {
    int batch_size = X.size(0);
    torch::Tensor dX = torch::zeros(X.sizes(), grad.options());
    torch::Tensor dp = torch::zeros(p.sizes(), grad.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "act4_backward_kernel", ([&] {
        act4_backward_kernel<group_t, scalar_t>(
            grad.data_ptr<scalar_t>(), 
            X.data_ptr<scalar_t>(), 
            p.data_ptr<scalar_t>(), 
            dX.data_ptr<scalar_t>(), 
            dp.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return {dX, dp};
}


torch::Tensor as_matrix_forward_cpu(int group_id, torch::Tensor X) {
    int batch_size = X.size(0);
    torch::Tensor T4x4 = torch::zeros({X.size(0), 4, 4}, X.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "as_matrix_forward_kernel", ([&] {
        as_matrix_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            T4x4.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return T4x4;
}


torch::Tensor orthogonal_projector_cpu(int group_id, torch::Tensor X) {
    int batch_size = X.size(0);
    torch::Tensor P;
    
    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "orthogonal_projector_kernel", ([&] {
        P = torch::zeros({X.size(0), group_t::N, group_t::N}, X.options());
        orthogonal_projector_kernel<group_t, scalar_t>(X.data_ptr<scalar_t>(), P.data_ptr<scalar_t>(), batch_size);
    }));

    return P;
}



torch::Tensor jleft_forward_cpu(int group_id, torch::Tensor X, torch::Tensor a) {
    int batch_size = X.size(0);
    torch::Tensor b = torch::zeros(a.sizes(), a.options());

    DISPATCH_GROUP_AND_FLOATING_TYPES(group_id, X.type(), "jleft_forward_kernel", ([&] {
        jleft_forward_kernel<group_t, scalar_t>(
            X.data_ptr<scalar_t>(), 
            a.data_ptr<scalar_t>(), 
            b.data_ptr<scalar_t>(), 
            batch_size);
    }));

    return b;
}