Spaces:
Sleeping
Sleeping
File size: 4,511 Bytes
899c526 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
#include <torch/extension.h>
#include <vector>
#include <unordered_map>
#include <algorithm>
#include <iostream>
std::vector<torch::Tensor> cuda_ba(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor target,
torch::Tensor weight,
torch::Tensor lmbda,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk,
int t0, int t1, int iterations);
torch::Tensor cuda_reproject(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk);
std::vector<torch::Tensor> ba(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor target,
torch::Tensor weight,
torch::Tensor lmbda,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk,
int t0, int t1, int iterations) {
return cuda_ba(poses, patches, intrinsics, target, weight, lmbda, ii, jj, kk, t0, t1, iterations);
}
torch::Tensor reproject(
torch::Tensor poses,
torch::Tensor patches,
torch::Tensor intrinsics,
torch::Tensor ii,
torch::Tensor jj,
torch::Tensor kk) {
return cuda_reproject(poses, patches, intrinsics, ii, jj, kk);
}
// std::vector<torch::Tensor> neighbors(torch::Tensor ii, torch::Tensor jj)
// {
// ii = ii.to(torch::kCPU);
// jj = jj.to(torch::kCPU);
// auto ii_data = ii.accessor<long,1>();
// auto jj_data = jj.accessor<long,1>();
// std::unordered_map<long, std::vector<long>> graph;
// std::unordered_map<long, std::vector<long>> index;
// for (int i=0; i < ii.size(0); i++) {
// const long ix = ii_data[i];
// const long jx = jj_data[i];
// if (graph.find(ix) == graph.end()) {
// graph[ix] = std::vector<long>();
// index[ix] = std::vector<long>();
// }
// graph[ix].push_back(jx);
// index[ix].push_back( i);
// }
// auto opts = torch::TensorOptions().dtype(torch::kInt64);
// torch::Tensor ix = torch::empty({ii.size(0)}, opts);
// torch::Tensor jx = torch::empty({jj.size(0)}, opts);
// auto ix_data = ix.accessor<long,1>();
// auto jx_data = jx.accessor<long,1>();
// for (std::pair<long, std::vector<long>> element : graph) {
// std::vector<long>& v = graph[element.first];
// std::vector<long>& idx = index[element.first];
// std::stable_sort(idx.begin(), idx.end(),
// [&v](size_t i, size_t j) {return v[i] < v[j];});
// ix_data[idx.front()] = -1;
// jx_data[idx.back()] = -1;
// for (int i=0; i < idx.size(); i++) {
// ix_data[idx[i]] = (i > 0) ? idx[i-1] : -1;
// jx_data[idx[i]] = (i < idx.size() - 1) ? idx[i+1] : -1;
// }
// }
// ix = ix.to(torch::kCUDA);
// jx = jx.to(torch::kCUDA);
// return {ix, jx};
// }
std::vector<torch::Tensor> neighbors(torch::Tensor ii, torch::Tensor jj)
{
auto tup = torch::_unique(ii, true, true);
torch::Tensor uniq = std::get<0>(tup).to(torch::kCPU);
torch::Tensor perm = std::get<1>(tup).to(torch::kCPU);
jj = jj.to(torch::kCPU);
auto jj_accessor = jj.accessor<long,1>();
auto perm_accessor = perm.accessor<long,1>();
std::vector<std::vector<long>> index(uniq.size(0));
for (int i=0; i < ii.size(0); i++) {
index[perm_accessor[i]].push_back(i);
}
auto opts = torch::TensorOptions().dtype(torch::kInt64);
torch::Tensor ix = torch::empty({ii.size(0)}, opts);
torch::Tensor jx = torch::empty({ii.size(0)}, opts);
auto ix_accessor = ix.accessor<long,1>();
auto jx_accessor = jx.accessor<long,1>();
for (int i=0; i<uniq.size(0); i++) {
std::vector<long>& idx = index[i];
std::stable_sort(idx.begin(), idx.end(),
[&jj_accessor](size_t i, size_t j) {return jj_accessor[i] < jj_accessor[j];});
for (int i=0; i < idx.size(); i++) {
ix_accessor[idx[i]] = (i > 0) ? idx[i-1] : -1;
jx_accessor[idx[i]] = (i < idx.size() - 1) ? idx[i+1] : -1;
}
}
// for (int i=0; i<ii.size(0); i++) {
// std::cout << jj_accessor[i] << " ";
// if (ix_accessor[i] >= 0) std::cout << jj_accessor[ix_accessor[i]] << " ";
// if (jx_accessor[i] >= 0) std::cout << jj_accessor[jx_accessor[i]] << " ";
// std::cout << std::endl;
// }
ix = ix.to(torch::kCUDA);
jx = jx.to(torch::kCUDA);
return {ix, jx};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &ba, "BA forward operator");
m.def("neighbors", &neighbors, "temporal neighboor indicies");
m.def("reproject", &reproject, "temporal neighboor indicies");
} |