Spaces:
Sleeping
Sleeping
File size: 10,422 Bytes
899c526 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
#ifndef RxSO3_HEADER
#define RxSO3_HEADER
#include <stdio.h>
#include <Eigen/Dense>
#include <Eigen/Geometry>
#include "common.h"
template <typename Scalar>
class RxSO3 {
public:
const static int constexpr K = 4; // manifold dimension
const static int constexpr N = 5; // embedding dimension
using Vector3 = Eigen::Matrix<Scalar,3,1>;
using Vector4 = Eigen::Matrix<Scalar,4,1>;
using Matrix3 = Eigen::Matrix<Scalar,3,3>;
using Tangent = Eigen::Matrix<Scalar,K,1>;
using Data = Eigen::Matrix<Scalar,N,1>;
using Point = Eigen::Matrix<Scalar,3,1>;
using Point4 = Eigen::Matrix<Scalar,4,1>;
using Quaternion = Eigen::Quaternion<Scalar>;
using Transformation = Eigen::Matrix<Scalar,3,3>;
using Adjoint = Eigen::Matrix<Scalar,4,4>;
EIGEN_DEVICE_FUNC RxSO3(Quaternion const& q, Scalar const s)
: unit_quaternion(q), scale(s) {
unit_quaternion.normalize();
};
EIGEN_DEVICE_FUNC RxSO3(const Scalar *data) : unit_quaternion(data), scale(data[4]) {
unit_quaternion.normalize();
};
EIGEN_DEVICE_FUNC RxSO3() {
unit_quaternion = Quaternion::Identity();
scale = Scalar(1.0);
}
EIGEN_DEVICE_FUNC RxSO3<Scalar> inv() {
return RxSO3<Scalar>(unit_quaternion.conjugate(), 1.0/scale);
}
EIGEN_DEVICE_FUNC Data data() const {
Data data_vec; data_vec << unit_quaternion.coeffs(), scale;
return data_vec;
}
EIGEN_DEVICE_FUNC RxSO3<Scalar> operator*(RxSO3<Scalar> const& other) {
return RxSO3<Scalar>(unit_quaternion * other.unit_quaternion, scale * other.scale);
}
EIGEN_DEVICE_FUNC Point operator*(Point const& p) const {
const Quaternion& q = unit_quaternion;
Point uv = q.vec().cross(p); uv += uv;
return scale * (p + q.w()*uv + q.vec().cross(uv));
}
EIGEN_DEVICE_FUNC Point4 act4(Point4 const& p) const {
Point4 p1; p1 << this->operator*(p.template segment<3>(0)), p(3);
return p1;
}
EIGEN_DEVICE_FUNC Adjoint Adj() const {
Adjoint Ad = Adjoint::Identity();
Ad.template block<3,3>(0,0) = unit_quaternion.toRotationMatrix();
return Ad;
}
EIGEN_DEVICE_FUNC Transformation Matrix() const {
return scale * unit_quaternion.toRotationMatrix();
}
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,4,4> Matrix4x4() const {
Eigen::Matrix<Scalar,4,4> T;
T = Eigen::Matrix<Scalar,4,4>::Identity();
T.template block<3,3>(0,0) = Matrix();
return T;
}
EIGEN_DEVICE_FUNC Eigen::Matrix<Scalar,5,5> orthogonal_projector() const {
// jacobian action on a point
Eigen::Matrix<Scalar,5,5> J = Eigen::Matrix<Scalar,5,5>::Zero();
J.template block<3,3>(0,0) = 0.5 * (
unit_quaternion.w() * Matrix3::Identity() +
SO3<Scalar>::hat(-unit_quaternion.vec())
);
J.template block<1,3>(3,0) = 0.5 * (-unit_quaternion.vec());
// scale
J(4,3) = scale;
return J;
}
EIGEN_DEVICE_FUNC Transformation Rotation() const {
return unit_quaternion.toRotationMatrix();
}
EIGEN_DEVICE_FUNC Tangent Adj(Tangent const& a) const {
return Adj() * a;
}
EIGEN_DEVICE_FUNC Tangent AdjT(Tangent const& a) const {
return Adj().transpose() * a;
}
EIGEN_DEVICE_FUNC static Transformation hat(Tangent const& phi_sigma) {
Vector3 const phi = phi_sigma.template segment<3>(0);
return SO3<Scalar>::hat(phi) + phi(3) * Transformation::Identity();
}
EIGEN_DEVICE_FUNC static Adjoint adj(Tangent const& phi_sigma) {
Vector3 const phi = phi_sigma.template segment<3>(0);
Matrix3 const Phi = SO3<Scalar>::hat(phi);
Adjoint ad = Adjoint::Zero();
ad.template block<3,3>(0,0) = Phi;
return ad;
}
EIGEN_DEVICE_FUNC Tangent Log() const {
using std::abs;
using std::atan;
using std::sqrt;
Scalar squared_n = unit_quaternion.vec().squaredNorm();
Scalar w = unit_quaternion.w();
Scalar two_atan_nbyw_by_n;
/// Atan-based log thanks to
///
/// C. Hertzberg et al.:
/// "Integrating Generic Sensor Fusion Algorithms with Sound State
/// Representation through Encapsulation of Manifolds"
/// Information Fusion, 2011
if (squared_n < EPS * EPS) {
two_atan_nbyw_by_n = Scalar(2) / w - Scalar(2.0/3.0) * (squared_n) / (w * w * w);
} else {
Scalar n = sqrt(squared_n);
if (abs(w) < EPS) {
if (w > Scalar(0)) {
two_atan_nbyw_by_n = PI / n;
} else {
two_atan_nbyw_by_n = -PI / n;
}
} else {
two_atan_nbyw_by_n = Scalar(2) * atan(n / w) / n;
}
}
Tangent phi_sigma;
phi_sigma << two_atan_nbyw_by_n * unit_quaternion.vec(), log(scale);
return phi_sigma;
}
EIGEN_DEVICE_FUNC static RxSO3<Scalar> Exp(Tangent const& phi_sigma) {
Vector3 phi = phi_sigma.template segment<3>(0);
Scalar scale = exp(phi_sigma(3));
Scalar theta2 = phi.squaredNorm();
Scalar theta = sqrt(theta2);
Scalar imag_factor;
Scalar real_factor;
if (theta < EPS) {
Scalar theta4 = theta2 * theta2;
imag_factor = Scalar(0.5) - Scalar(1.0/48.0) * theta2 + Scalar(1.0/3840.0) * theta4;
real_factor = Scalar(1) - Scalar(1.0/8.0) * theta2 + Scalar(1.0/384.0) * theta4;
} else {
imag_factor = sin(.5 * theta) / theta;
real_factor = cos(.5 * theta);
}
Quaternion q(real_factor, imag_factor*phi.x(), imag_factor*phi.y(), imag_factor*phi.z());
return RxSO3<Scalar>(q, scale);
}
EIGEN_DEVICE_FUNC static Matrix3 calcW(Tangent const& phi_sigma) {
// left jacobian
using std::abs;
Matrix3 const I = Matrix3::Identity();
Scalar const one(1);
Scalar const half(0.5);
Vector3 const phi = phi_sigma.template segment<3>(0);
Scalar const sigma = phi_sigma(3);
Scalar const theta = phi.norm();
Matrix3 const Phi = SO3<Scalar>::hat(phi);
Matrix3 const Phi2 = Phi * Phi;
Scalar const scale = exp(sigma);
Scalar A, B, C;
if (abs(sigma) < EPS) {
C = one;
if (abs(theta) < EPS) {
A = half;
B = Scalar(1. / 6.);
} else {
Scalar theta_sq = theta * theta;
A = (one - cos(theta)) / theta_sq;
B = (theta - sin(theta)) / (theta_sq * theta);
}
} else {
C = (scale - one) / sigma;
if (abs(theta) < EPS) {
Scalar sigma_sq = sigma * sigma;
A = ((sigma - one) * scale + one) / sigma_sq;
B = (scale * half * sigma_sq + scale - one - sigma * scale) /
(sigma_sq * sigma);
} else {
Scalar theta_sq = theta * theta;
Scalar a = scale * sin(theta);
Scalar b = scale * cos(theta);
Scalar c = theta_sq + sigma * sigma;
A = (a * sigma + (one - b) * theta) / (theta * c);
B = (C - ((b - one) * sigma + a * theta) / (c)) * one / (theta_sq);
}
}
return A * Phi + B * Phi2 + C * I;
}
EIGEN_DEVICE_FUNC static Matrix3 calcWInv(Tangent const& phi_sigma) {
// left jacobian inverse
Matrix3 const I = Matrix3::Identity();
Scalar const half(0.5);
Scalar const one(1);
Scalar const two(2);
Vector3 const phi = phi_sigma.template segment<3>(0);
Scalar const sigma = phi_sigma(3);
Scalar const theta = phi.norm();
Scalar const scale = exp(sigma);
Matrix3 const Phi = SO3<Scalar>::hat(phi);
Matrix3 const Phi2 = Phi * Phi;
Scalar const scale_sq = scale * scale;
Scalar const theta_sq = theta * theta;
Scalar const sin_theta = sin(theta);
Scalar const cos_theta = cos(theta);
Scalar a, b, c;
if (abs(sigma * sigma) < EPS) {
c = one - half * sigma;
a = -half;
if (abs(theta_sq) < EPS) {
b = Scalar(1. / 12.);
} else {
b = (theta * sin_theta + two * cos_theta - two) /
(two * theta_sq * (cos_theta - one));
}
} else {
Scalar const scale_cu = scale_sq * scale;
c = sigma / (scale - one);
if (abs(theta_sq) < EPS) {
a = (-sigma * scale + scale - one) / ((scale - one) * (scale - one));
b = (scale_sq * sigma - two * scale_sq + scale * sigma + two * scale) /
(two * scale_cu - Scalar(6) * scale_sq + Scalar(6) * scale - two);
} else {
Scalar const s_sin_theta = scale * sin_theta;
Scalar const s_cos_theta = scale * cos_theta;
a = (theta * s_cos_theta - theta - sigma * s_sin_theta) /
(theta * (scale_sq - two * s_cos_theta + one));
b = -scale *
(theta * s_sin_theta - theta * sin_theta + sigma * s_cos_theta -
scale * sigma + sigma * cos_theta - sigma) /
(theta_sq * (scale_cu - two * scale * s_cos_theta - scale_sq +
two * s_cos_theta + scale - one));
}
}
return a * Phi + b * Phi2 + c * I;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian(Tangent const& phi_sigma) {
// left jacobian
Adjoint J = Adjoint::Identity();
Vector3 phi = phi_sigma.template segment<3>(0);
J.template block<3,3>(0,0) = SO3<Scalar>::left_jacobian(phi);
return J;
}
EIGEN_DEVICE_FUNC static Adjoint left_jacobian_inverse(Tangent const& phi_sigma) {
// left jacobian inverse
Adjoint Jinv = Adjoint::Identity();
Vector3 phi = phi_sigma.template segment<3>(0);
Jinv.template block<3,3>(0,0) = SO3<Scalar>::left_jacobian_inverse(phi);
return Jinv;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,3,4> act_jacobian(Point const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,3,4> Ja;
Ja << SO3<Scalar>::hat(-p), p;
return Ja;
}
EIGEN_DEVICE_FUNC static Eigen::Matrix<Scalar,4,4> act4_jacobian(Point4 const& p) {
// jacobian action on a point
Eigen::Matrix<Scalar,4,4> J = Eigen::Matrix<Scalar,4,4>::Zero();
J.template block<3,3>(0,0) = SO3<Scalar>::hat(-p.template segment<3>(0));
J.template block<3,1>(0,3) = p.template segment<3>(0);
return J;
}
private:
Quaternion unit_quaternion;
Scalar scale;
};
#endif
|