Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Load the hotdog-not-hotdog model | |
hotdog_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
# Load the chatbot model (DialoGPT) | |
chatbot_pipeline = pipeline(task="text-generation", model="microsoft/DialoGPT-medium") | |
def predict(input_data, option): | |
if option == "Image Classification": | |
# Predict hotdog or not | |
hotdog_predictions = hotdog_pipeline(input_data) | |
return input_data, { | |
"Hotdog Classification": {p["label"]: p["score"] for p in hotdog_predictions}, | |
} | |
elif option == "Chatbot": | |
# Generate chatbot response | |
chatbot_response = chatbot_pipeline(input_data, max_length=50)[0]['generated_text'] | |
return input_data, { | |
"Chatbot Response": chatbot_response | |
} | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), | |
gr.Dropdown(label="Choose Option", choices=["Image Classification", "Chatbot"]) | |
], | |
outputs=[ | |
gr.Image(label="Processed Image"), | |
gr.Label(label="Hotdog Classification", num_top_classes=2), | |
gr.Textbox(label="Chatbot Response", type="text"), | |
], | |
title="Hot Dog? Or Chat with the Bot?", | |
) | |
if __name__ == "__main__": | |
iface.launch() |