import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch # Cell 1: Image Classification Model image_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") def predict_image(input_img): predictions = image_pipeline(input_img) return input_img, {p["label"]: p["score"] for p in predictions} image_gradio_app = gr.Interface( fn=predict_image, inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"), outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)], title="Hot Dog? Or Not?", ) # Cell 2: Chatbot Model tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") def predict_chatbot(input, history=[]): new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) history = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() response = tokenizer.decode(history[0]).split("") response_tuples = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] return response_tuples, history chatbot_gradio_app = gr.ChatInterface( fn=predict_chatbot, inputs=gr.Textbox(show_label=False, placeholder="Enter text and press enter"), outputs=gr.Textbox(), live=True, title="Greta", ) # Combine both interfaces into a single app gr.TabbedInterface( [image_gradio_app, chatbot_gradio_app], tab_names=["image","chatbot"] ).launch()