papasega's picture
Update app.py
cf652b0 verified
raw
history blame contribute delete
972 Bytes
import tensorflow as tf
import numpy as np
import gradio as gr
import cv2 # opencv-python
model = tf.keras.models.load_model("TP_MNIST_CNN_model.h5")
def preprocess_image(img):
img = tf.image.rgb_to_grayscale(img) # Convert to grayscale
img = tf.image.resize(img, (28, 28)) # Resize to model input size
img = img / 255.0 # Normalize pixel values
img = np.expand_dims(img, axis=0) # Add batch dimension
return img
# Function to make predictions
def predict_image(img):
processed_img = preprocess_image(img)
prediction = model.predict(processed_img)
return {str(i): float(prediction[0][i]) for i in range(10)}
gr.Interface(
fn=predict_image,
inputs=gr.Image(),
outputs=gr.Label(num_top_classes=3),
examples=["minst6.png", "mnist1.png", "mnist2_5.png", "mnist69.png"], # Example images for interface
title='Handwritten Digits Classification stage DREAMS Team'
).launch(share=True)