Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,22 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from threading import Thread
|
4 |
-
|
5 |
-
import time
|
6 |
import cv2
|
|
|
7 |
import datetime
|
|
|
8 |
import torch
|
|
|
9 |
import spaces
|
10 |
import numpy as np
|
11 |
-
import json
|
12 |
-
import hashlib
|
13 |
-
import PIL
|
14 |
-
from typing import Iterator
|
15 |
|
16 |
from llava import conversation as conversation_lib
|
17 |
from llava.constants import DEFAULT_IMAGE_TOKEN
|
|
|
|
|
18 |
from llava.constants import (
|
19 |
IMAGE_TOKEN_INDEX,
|
20 |
DEFAULT_IMAGE_TOKEN,
|
@@ -29,14 +31,24 @@ from llava.mm_utils import (
|
|
29 |
get_model_name_from_path,
|
30 |
KeywordsStoppingCriteria,
|
31 |
)
|
32 |
-
|
33 |
from serve_constants import html_header
|
34 |
|
35 |
import requests
|
36 |
from PIL import Image
|
37 |
from io import BytesIO
|
38 |
-
from transformers import TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
import subprocess
|
|
|
40 |
|
41 |
external_log_dir = "./logs"
|
42 |
LOGDIR = external_log_dir
|
@@ -51,9 +63,13 @@ def install_gradio_4_35_0():
|
|
51 |
else:
|
52 |
print("Gradio 4.35.0 is already installed.")
|
53 |
|
|
|
54 |
install_gradio_4_35_0()
|
55 |
|
|
|
|
|
56 |
print(f"Gradio version: {gr.__version__}")
|
|
|
57 |
|
58 |
def get_conv_log_filename():
|
59 |
t = datetime.datetime.now()
|
@@ -66,12 +82,12 @@ class InferenceDemo(object):
|
|
66 |
) -> None:
|
67 |
disable_torch_init()
|
68 |
|
69 |
-
self.tokenizer =
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
if "llama-2" in model_name.lower():
|
77 |
conv_mode = "llava_llama_2"
|
@@ -94,43 +110,31 @@ class InferenceDemo(object):
|
|
94 |
)
|
95 |
else:
|
96 |
args.conv_mode = conv_mode
|
97 |
-
|
98 |
self.conv_mode = conv_mode
|
99 |
self.conversation = conv_templates[args.conv_mode].copy()
|
100 |
self.num_frames = args.num_frames
|
101 |
|
102 |
-
def process_stream(streamer: TextIteratorStreamer, history: list, q: Queue):
|
103 |
-
"""Process the output stream and put partial text into a queue"""
|
104 |
-
try:
|
105 |
-
current_message = ""
|
106 |
-
for new_text in streamer:
|
107 |
-
current_message += new_text
|
108 |
-
history[-1][1] = current_message
|
109 |
-
q.put(history.copy())
|
110 |
-
time.sleep(0.02) # Add a small delay to prevent overloading
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Error in process_stream: {e}")
|
113 |
-
finally:
|
114 |
-
q.put(None) # Signal that we're done
|
115 |
-
|
116 |
-
def stream_output(history: list, q: Queue) -> Iterator[list]:
|
117 |
-
"""Yield updated history as it comes through the queue"""
|
118 |
-
while True:
|
119 |
-
val = q.get()
|
120 |
-
if val is None:
|
121 |
-
break
|
122 |
-
yield val
|
123 |
-
q.task_done()
|
124 |
|
125 |
def is_valid_video_filename(name):
|
126 |
video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]
|
|
|
127 |
ext = name.split(".")[-1].lower()
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def is_valid_image_filename(name):
|
131 |
-
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
|
|
|
132 |
ext = name.split(".")[-1].lower()
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
def sample_frames(video_file, num_frames):
|
136 |
video = cv2.VideoCapture(video_file)
|
@@ -139,33 +143,54 @@ def sample_frames(video_file, num_frames):
|
|
139 |
frames = []
|
140 |
for i in range(total_frames):
|
141 |
ret, frame = video.read()
|
|
|
142 |
if not ret:
|
143 |
continue
|
144 |
-
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
145 |
if i % interval == 0:
|
146 |
frames.append(pil_img)
|
147 |
video.release()
|
148 |
return frames
|
149 |
|
|
|
150 |
def load_image(image_file):
|
151 |
-
if image_file.startswith(
|
152 |
response = requests.get(image_file)
|
153 |
if response.status_code == 200:
|
154 |
image = Image.open(BytesIO(response.content)).convert("RGB")
|
155 |
else:
|
156 |
-
print("
|
157 |
-
return None
|
158 |
else:
|
159 |
-
print("Load image from local file
|
|
|
160 |
image = Image.open(image_file).convert("RGB")
|
|
|
161 |
return image
|
162 |
|
|
|
163 |
def clear_history(history):
|
164 |
-
|
165 |
our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
|
|
|
166 |
return None
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
def add_message(history, message):
|
|
|
169 |
global our_chatbot
|
170 |
if len(history) == 0:
|
171 |
our_chatbot = InferenceDemo(
|
@@ -178,47 +203,38 @@ def add_message(history, message):
|
|
178 |
history.append((message["text"], None))
|
179 |
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
180 |
|
|
|
181 |
@spaces.GPU
|
182 |
def bot(history):
|
183 |
-
global start_tstamp, finish_tstamp
|
184 |
-
|
185 |
-
start_tstamp = time.time()
|
186 |
text = history[-1][0]
|
187 |
images_this_term = []
|
|
|
|
|
188 |
num_new_images = 0
|
189 |
-
|
190 |
for i, message in enumerate(history[:-1]):
|
191 |
-
if
|
192 |
images_this_term.append(message[0][0])
|
193 |
if is_valid_video_filename(message[0][0]):
|
|
|
194 |
raise ValueError("Video is not supported")
|
|
|
195 |
elif is_valid_image_filename(message[0][0]):
|
|
|
196 |
num_new_images += 1
|
197 |
else:
|
198 |
raise ValueError("Invalid image file")
|
199 |
else:
|
200 |
num_new_images = 0
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
image_list.append(load_image(f))
|
210 |
-
else:
|
211 |
-
raise ValueError("Invalid image file")
|
212 |
-
|
213 |
-
image_tensor = [
|
214 |
-
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][0]
|
215 |
-
.half()
|
216 |
-
.to(our_chatbot.model.device)
|
217 |
-
for f in image_list
|
218 |
-
]
|
219 |
-
|
220 |
-
# Process image hashes
|
221 |
all_image_hash = []
|
|
|
222 |
for image_path in images_this_term:
|
223 |
with open(image_path, "rb") as image_file:
|
224 |
image_data = image_file.read()
|
@@ -232,26 +248,54 @@ def bot(history):
|
|
232 |
f"{t.year}-{t.month:02d}-{t.day:02d}",
|
233 |
f"{image_hash}.jpg",
|
234 |
)
|
|
|
235 |
if not os.path.isfile(filename):
|
236 |
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
|
237 |
image.save(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
image_tensor = torch.stack(image_tensor)
|
240 |
image_token = DEFAULT_IMAGE_TOKEN * num_new_images
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
243 |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
|
|
|
244 |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
|
245 |
prompt = our_chatbot.conversation.get_prompt()
|
246 |
|
247 |
-
input_ids = (
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
|
250 |
-
)
|
251 |
-
|
252 |
-
.to(our_chatbot.model.device)
|
253 |
-
)
|
254 |
-
|
255 |
stop_str = (
|
256 |
our_chatbot.conversation.sep
|
257 |
if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
|
@@ -261,54 +305,85 @@ def bot(history):
|
|
261 |
stopping_criteria = KeywordsStoppingCriteria(
|
262 |
keywords, our_chatbot.tokenizer, input_ids
|
263 |
)
|
264 |
-
|
265 |
-
#
|
266 |
-
|
267 |
streamer = TextIteratorStreamer(
|
268 |
-
our_chatbot.tokenizer,
|
269 |
-
skip_prompt=True,
|
270 |
-
skip_special_tokens=True
|
271 |
)
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
)
|
278 |
-
thread.start()
|
279 |
-
|
280 |
-
# Start the generation
|
281 |
-
with torch.inference_mode():
|
282 |
-
output_ids = our_chatbot.model.generate(
|
283 |
-
input_ids,
|
284 |
-
images=image_tensor,
|
285 |
-
do_sample=True,
|
286 |
-
temperature=0.2,
|
287 |
-
max_new_tokens=1024,
|
288 |
-
streamer=streamer,
|
289 |
-
use_cache=True,
|
290 |
-
stopping_criteria=[stopping_criteria],
|
291 |
-
)
|
292 |
-
|
293 |
-
finish_tstamp = time.time()
|
294 |
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
with open(get_conv_log_filename(), "a") as fout:
|
297 |
data = {
|
298 |
-
"tstamp": round(finish_tstamp, 4),
|
299 |
"type": "chat",
|
300 |
"model": "Pangea-7b",
|
301 |
-
"start": round(start_tstamp, 4),
|
302 |
-
"finish": round(finish_tstamp, 4),
|
303 |
"state": history,
|
304 |
"images": all_image_hash,
|
|
|
305 |
}
|
|
|
306 |
fout.write(json.dumps(data) + "\n")
|
|
|
|
|
307 |
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
|
|
|
312 |
gr.HTML(html_header)
|
313 |
|
314 |
with gr.Column():
|
@@ -319,8 +394,10 @@ with gr.Blocks(css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-wid
|
|
319 |
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
|
320 |
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
|
321 |
flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
|
|
|
322 |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
|
323 |
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
|
|
|
324 |
|
325 |
chat_input = gr.MultimodalTextbox(
|
326 |
interactive=True,
|
@@ -330,11 +407,11 @@ with gr.Blocks(css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-wid
|
|
330 |
submit_btn="🚀"
|
331 |
)
|
332 |
|
333 |
-
cur_dir
|
334 |
gr.Examples(
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
{
|
339 |
"files": [
|
340 |
f"{cur_dir}/examples/user_example_07.jpg",
|
@@ -358,45 +435,158 @@ with gr.Blocks(css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-wid
|
|
358 |
"text": "Why this image funny?",
|
359 |
},
|
360 |
],
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
chat_msg = chat_input.submit(
|
367 |
-
add_message,
|
368 |
-
[chatbot, chat_input],
|
369 |
-
[chatbot, chat_input],
|
370 |
-
queue=False
|
371 |
-
).then(
|
372 |
-
bot,
|
373 |
-
chatbot,
|
374 |
-
chatbot,
|
375 |
-
api_name="bot_response"
|
376 |
-
).then(
|
377 |
-
lambda: gr.MultimodalTextbox(interactive=True),
|
378 |
-
None,
|
379 |
-
[chat_input]
|
380 |
)
|
|
|
|
|
381 |
|
|
|
382 |
clear_btn.click(
|
383 |
-
fn=clear_history,
|
384 |
-
inputs=[chatbot],
|
385 |
-
outputs=[chatbot],
|
386 |
-
api_name="clear_all",
|
387 |
-
queue=False
|
388 |
)
|
389 |
|
390 |
-
regenerate_btn.click(
|
391 |
-
fn=lambda history: history[:-1],
|
392 |
-
inputs=[chatbot],
|
393 |
-
outputs=[chatbot],
|
394 |
-
queue=False
|
395 |
-
).then(
|
396 |
-
bot,
|
397 |
-
chatbot,
|
398 |
-
chatbot
|
399 |
-
)
|
400 |
|
401 |
demo.queue()
|
402 |
|
|
|
1 |
+
# from .demo_modelpart import InferenceDemo
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
from threading import Thread
|
5 |
+
|
6 |
+
# import time
|
7 |
import cv2
|
8 |
+
|
9 |
import datetime
|
10 |
+
# import copy
|
11 |
import torch
|
12 |
+
|
13 |
import spaces
|
14 |
import numpy as np
|
|
|
|
|
|
|
|
|
15 |
|
16 |
from llava import conversation as conversation_lib
|
17 |
from llava.constants import DEFAULT_IMAGE_TOKEN
|
18 |
+
|
19 |
+
|
20 |
from llava.constants import (
|
21 |
IMAGE_TOKEN_INDEX,
|
22 |
DEFAULT_IMAGE_TOKEN,
|
|
|
31 |
get_model_name_from_path,
|
32 |
KeywordsStoppingCriteria,
|
33 |
)
|
34 |
+
|
35 |
from serve_constants import html_header
|
36 |
|
37 |
import requests
|
38 |
from PIL import Image
|
39 |
from io import BytesIO
|
40 |
+
from transformers import TextStreamer, TextIteratorStreamer
|
41 |
+
|
42 |
+
import hashlib
|
43 |
+
import PIL
|
44 |
+
import base64
|
45 |
+
import json
|
46 |
+
|
47 |
+
import datetime
|
48 |
+
import gradio as gr
|
49 |
+
import gradio_client
|
50 |
import subprocess
|
51 |
+
import sys
|
52 |
|
53 |
external_log_dir = "./logs"
|
54 |
LOGDIR = external_log_dir
|
|
|
63 |
else:
|
64 |
print("Gradio 4.35.0 is already installed.")
|
65 |
|
66 |
+
# Call the function to install Gradio 4.35.0 if needed
|
67 |
install_gradio_4_35_0()
|
68 |
|
69 |
+
import gradio as gr
|
70 |
+
import gradio_client
|
71 |
print(f"Gradio version: {gr.__version__}")
|
72 |
+
print(f"Gradio-client version: {gradio_client.__version__}")
|
73 |
|
74 |
def get_conv_log_filename():
|
75 |
t = datetime.datetime.now()
|
|
|
82 |
) -> None:
|
83 |
disable_torch_init()
|
84 |
|
85 |
+
self.tokenizer, self.model, self.image_processor, self.context_len = (
|
86 |
+
tokenizer,
|
87 |
+
model,
|
88 |
+
image_processor,
|
89 |
+
context_len,
|
90 |
+
)
|
91 |
|
92 |
if "llama-2" in model_name.lower():
|
93 |
conv_mode = "llava_llama_2"
|
|
|
110 |
)
|
111 |
else:
|
112 |
args.conv_mode = conv_mode
|
|
|
113 |
self.conv_mode = conv_mode
|
114 |
self.conversation = conv_templates[args.conv_mode].copy()
|
115 |
self.num_frames = args.num_frames
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
def is_valid_video_filename(name):
|
119 |
video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]
|
120 |
+
|
121 |
ext = name.split(".")[-1].lower()
|
122 |
+
|
123 |
+
if ext in video_extensions:
|
124 |
+
return True
|
125 |
+
else:
|
126 |
+
return False
|
127 |
|
128 |
def is_valid_image_filename(name):
|
129 |
+
image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
|
130 |
+
|
131 |
ext = name.split(".")[-1].lower()
|
132 |
+
|
133 |
+
if ext in image_extensions:
|
134 |
+
return True
|
135 |
+
else:
|
136 |
+
return False
|
137 |
+
|
138 |
|
139 |
def sample_frames(video_file, num_frames):
|
140 |
video = cv2.VideoCapture(video_file)
|
|
|
143 |
frames = []
|
144 |
for i in range(total_frames):
|
145 |
ret, frame = video.read()
|
146 |
+
pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
147 |
if not ret:
|
148 |
continue
|
|
|
149 |
if i % interval == 0:
|
150 |
frames.append(pil_img)
|
151 |
video.release()
|
152 |
return frames
|
153 |
|
154 |
+
|
155 |
def load_image(image_file):
|
156 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
157 |
response = requests.get(image_file)
|
158 |
if response.status_code == 200:
|
159 |
image = Image.open(BytesIO(response.content)).convert("RGB")
|
160 |
else:
|
161 |
+
print("failed to load the image")
|
|
|
162 |
else:
|
163 |
+
print("Load image from local file")
|
164 |
+
print(image_file)
|
165 |
image = Image.open(image_file).convert("RGB")
|
166 |
+
|
167 |
return image
|
168 |
|
169 |
+
|
170 |
def clear_history(history):
|
171 |
+
|
172 |
our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
|
173 |
+
|
174 |
return None
|
175 |
|
176 |
+
|
177 |
+
def clear_response(history):
|
178 |
+
for index_conv in range(1, len(history)):
|
179 |
+
# loop until get a text response from our model.
|
180 |
+
conv = history[-index_conv]
|
181 |
+
if not (conv[0] is None):
|
182 |
+
break
|
183 |
+
question = history[-index_conv][0]
|
184 |
+
history = history[:-index_conv]
|
185 |
+
return history, question
|
186 |
+
|
187 |
+
|
188 |
+
# def print_like_dislike(x: gr.LikeData):
|
189 |
+
# print(x.index, x.value, x.liked)
|
190 |
+
|
191 |
+
|
192 |
def add_message(history, message):
|
193 |
+
# history=[]
|
194 |
global our_chatbot
|
195 |
if len(history) == 0:
|
196 |
our_chatbot = InferenceDemo(
|
|
|
203 |
history.append((message["text"], None))
|
204 |
return history, gr.MultimodalTextbox(value=None, interactive=False)
|
205 |
|
206 |
+
|
207 |
@spaces.GPU
|
208 |
def bot(history):
|
|
|
|
|
|
|
209 |
text = history[-1][0]
|
210 |
images_this_term = []
|
211 |
+
text_this_term = ""
|
212 |
+
# import pdb;pdb.set_trace()
|
213 |
num_new_images = 0
|
|
|
214 |
for i, message in enumerate(history[:-1]):
|
215 |
+
if type(message[0]) is tuple:
|
216 |
images_this_term.append(message[0][0])
|
217 |
if is_valid_video_filename(message[0][0]):
|
218 |
+
# 不接受视频
|
219 |
raise ValueError("Video is not supported")
|
220 |
+
num_new_images += our_chatbot.num_frames
|
221 |
elif is_valid_image_filename(message[0][0]):
|
222 |
+
print("#### Load image from local file",message[0][0])
|
223 |
num_new_images += 1
|
224 |
else:
|
225 |
raise ValueError("Invalid image file")
|
226 |
else:
|
227 |
num_new_images = 0
|
228 |
|
229 |
+
# for message in history[-i-1:]:
|
230 |
+
# images_this_term.append(message[0][0])
|
231 |
+
|
232 |
+
assert len(images_this_term) > 0, "must have an image"
|
233 |
+
# image_files = (args.image_file).split(',')
|
234 |
+
# image = [load_image(f) for f in images_this_term if f]
|
235 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
all_image_hash = []
|
237 |
+
all_image_path = []
|
238 |
for image_path in images_this_term:
|
239 |
with open(image_path, "rb") as image_file:
|
240 |
image_data = image_file.read()
|
|
|
248 |
f"{t.year}-{t.month:02d}-{t.day:02d}",
|
249 |
f"{image_hash}.jpg",
|
250 |
)
|
251 |
+
all_image_path.append(filename)
|
252 |
if not os.path.isfile(filename):
|
253 |
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
254 |
+
print("image save to",filename)
|
255 |
image.save(filename)
|
256 |
+
|
257 |
+
image_list = []
|
258 |
+
for f in images_this_term:
|
259 |
+
if is_valid_video_filename(f):
|
260 |
+
image_list += sample_frames(f, our_chatbot.num_frames)
|
261 |
+
elif is_valid_image_filename(f):
|
262 |
+
image_list.append(load_image(f))
|
263 |
+
else:
|
264 |
+
raise ValueError("Invalid image file")
|
265 |
+
|
266 |
+
image_tensor = [
|
267 |
+
our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][
|
268 |
+
0
|
269 |
+
]
|
270 |
+
.half()
|
271 |
+
.to(our_chatbot.model.device)
|
272 |
+
for f in image_list
|
273 |
+
]
|
274 |
+
|
275 |
|
276 |
image_tensor = torch.stack(image_tensor)
|
277 |
image_token = DEFAULT_IMAGE_TOKEN * num_new_images
|
278 |
+
# if our_chatbot.model.config.mm_use_im_start_end:
|
279 |
+
# inp = DEFAULT_IM_START_TOKEN + image_token + DEFAULT_IM_END_TOKEN + "\n" + inp
|
280 |
+
# else:
|
281 |
+
inp = text
|
282 |
+
inp = image_token + "\n" + inp
|
283 |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
|
284 |
+
# image = None
|
285 |
our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
|
286 |
prompt = our_chatbot.conversation.get_prompt()
|
287 |
|
288 |
+
# input_ids = (
|
289 |
+
# tokenizer_image_token(
|
290 |
+
# prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
|
291 |
+
# )
|
292 |
+
# .unsqueeze(0)
|
293 |
+
# .to(our_chatbot.model.device)
|
294 |
+
# )
|
295 |
+
input_ids = tokenizer_image_token(
|
296 |
prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
|
297 |
+
).unsqueeze(0).to(our_chatbot.model.device)
|
298 |
+
# print("### input_id",input_ids)
|
|
|
|
|
|
|
299 |
stop_str = (
|
300 |
our_chatbot.conversation.sep
|
301 |
if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
|
|
|
305 |
stopping_criteria = KeywordsStoppingCriteria(
|
306 |
keywords, our_chatbot.tokenizer, input_ids
|
307 |
)
|
308 |
+
# streamer = TextStreamer(
|
309 |
+
# our_chatbot.tokenizer, skip_prompt=True, skip_special_tokens=True
|
310 |
+
# )
|
311 |
streamer = TextIteratorStreamer(
|
312 |
+
our_chatbot.tokenizer, skip_prompt=True, skip_special_tokens=True
|
|
|
|
|
313 |
)
|
314 |
+
print(our_chatbot.model.device)
|
315 |
+
print(input_ids.device)
|
316 |
+
print(image_tensor.device)
|
317 |
+
|
318 |
+
# with torch.inference_mode():
|
319 |
+
# output_ids = our_chatbot.model.generate(
|
320 |
+
# input_ids,
|
321 |
+
# images=image_tensor,
|
322 |
+
# do_sample=True,
|
323 |
+
# temperature=0.7,
|
324 |
+
# top_p=1.0,
|
325 |
+
# max_new_tokens=4096,
|
326 |
+
# streamer=streamer,
|
327 |
+
# use_cache=False,
|
328 |
+
# stopping_criteria=[stopping_criteria],
|
329 |
+
# )
|
330 |
+
|
331 |
+
# outputs = our_chatbot.tokenizer.decode(output_ids[0]).strip()
|
332 |
+
# if outputs.endswith(stop_str):
|
333 |
+
# outputs = outputs[: -len(stop_str)]
|
334 |
+
# our_chatbot.conversation.messages[-1][-1] = outputs
|
335 |
+
|
336 |
+
# history[-1] = [text, outputs]
|
337 |
+
|
338 |
+
# return history
|
339 |
+
generate_kwargs = dict(
|
340 |
+
inputs=input_ids,
|
341 |
+
streamer=streamer,
|
342 |
+
images=image_tensor,
|
343 |
+
max_new_tokens=1024,
|
344 |
+
do_sample=True,
|
345 |
+
temperature=0.2,
|
346 |
+
num_beams=1,
|
347 |
+
use_cache=False,
|
348 |
+
stopping_criteria=[stopping_criteria],
|
349 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
t = Thread(target=our_chatbot.model.generate, kwargs=generate_kwargs)
|
352 |
+
t.start()
|
353 |
+
|
354 |
+
outputs = []
|
355 |
+
for text in streamer:
|
356 |
+
outputs.append(text)
|
357 |
+
our_chatbot.conversation.messages[-1][-1] = "".join(outputs)
|
358 |
+
history[-1] = [text, "".join(outputs)]
|
359 |
+
yield history
|
360 |
+
|
361 |
with open(get_conv_log_filename(), "a") as fout:
|
362 |
data = {
|
|
|
363 |
"type": "chat",
|
364 |
"model": "Pangea-7b",
|
|
|
|
|
365 |
"state": history,
|
366 |
"images": all_image_hash,
|
367 |
+
"images_path": all_image_path
|
368 |
}
|
369 |
+
print("#### conv log",data)
|
370 |
fout.write(json.dumps(data) + "\n")
|
371 |
+
|
372 |
+
|
373 |
|
374 |
+
txt = gr.Textbox(
|
375 |
+
scale=4,
|
376 |
+
show_label=False,
|
377 |
+
placeholder="Enter text and press enter.",
|
378 |
+
container=False,
|
379 |
+
)
|
380 |
+
|
381 |
+
with gr.Blocks(
|
382 |
+
css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 40px}",
|
383 |
+
) as demo:
|
384 |
|
385 |
+
cur_dir = os.path.dirname(os.path.abspath(__file__))
|
386 |
+
# gr.Markdown(title_markdown)
|
387 |
gr.HTML(html_header)
|
388 |
|
389 |
with gr.Column():
|
|
|
394 |
upvote_btn = gr.Button(value="👍 Upvote", interactive=True)
|
395 |
downvote_btn = gr.Button(value="👎 Downvote", interactive=True)
|
396 |
flag_btn = gr.Button(value="⚠️ Flag", interactive=True)
|
397 |
+
# stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=True)
|
398 |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
|
399 |
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
|
400 |
+
|
401 |
|
402 |
chat_input = gr.MultimodalTextbox(
|
403 |
interactive=True,
|
|
|
407 |
submit_btn="🚀"
|
408 |
)
|
409 |
|
410 |
+
print(cur_dir)
|
411 |
gr.Examples(
|
412 |
+
examples_per_page=20,
|
413 |
+
examples=[
|
414 |
+
[
|
415 |
{
|
416 |
"files": [
|
417 |
f"{cur_dir}/examples/user_example_07.jpg",
|
|
|
435 |
"text": "Why this image funny?",
|
436 |
},
|
437 |
],
|
438 |
+
[
|
439 |
+
{
|
440 |
+
"files": [
|
441 |
+
f"{cur_dir}/examples/norway.jpg",
|
442 |
+
],
|
443 |
+
"text": "Analysieren, in welchem Land diese Szene höchstwahrscheinlich gedreht wurde.",
|
444 |
+
},
|
445 |
+
],
|
446 |
+
[
|
447 |
+
{
|
448 |
+
"files": [
|
449 |
+
f"{cur_dir}/examples/totoro.jpg",
|
450 |
+
],
|
451 |
+
"text": "¿En qué anime aparece esta escena? ¿Puedes presentarlo?",
|
452 |
+
},
|
453 |
+
],
|
454 |
+
[
|
455 |
+
{
|
456 |
+
"files": [
|
457 |
+
f"{cur_dir}/examples/africa.jpg",
|
458 |
+
],
|
459 |
+
"text": "इस तस्वीर में हर एक दृश्य तत्व का क्या प्रतिनिधित्व करता है?",
|
460 |
+
},
|
461 |
+
],
|
462 |
+
[
|
463 |
+
{
|
464 |
+
"files": [
|
465 |
+
f"{cur_dir}/examples/hot_ballon.jpg",
|
466 |
+
],
|
467 |
+
"text": "ฉากบอลลูนลมร้อนในภาพนี้อาจอยู่ที่ไหน? สถานที่นี้มีความพิเศษอย่างไร?",
|
468 |
+
},
|
469 |
+
],
|
470 |
+
[
|
471 |
+
{
|
472 |
+
"files": [
|
473 |
+
f"{cur_dir}/examples/bar.jpg",
|
474 |
+
],
|
475 |
+
"text": "Você pode me dar ideias de design baseadas no tema de coquetéis deste letreiro?",
|
476 |
+
},
|
477 |
+
],
|
478 |
+
[
|
479 |
+
{
|
480 |
+
"files": [
|
481 |
+
f"{cur_dir}/examples/pink_lake.jpg",
|
482 |
+
],
|
483 |
+
"text": "Обясни защо езерото на този остров е в този цвят.",
|
484 |
+
},
|
485 |
+
],
|
486 |
+
[
|
487 |
+
{
|
488 |
+
"files": [
|
489 |
+
f"{cur_dir}/examples/hanzi.jpg",
|
490 |
+
],
|
491 |
+
"text": "Can you describe in Hebrew the evolution process of these four Chinese characters from pictographs to modern characters?",
|
492 |
+
},
|
493 |
+
],
|
494 |
+
[
|
495 |
+
{
|
496 |
+
"files": [
|
497 |
+
f"{cur_dir}/examples/ballon.jpg",
|
498 |
+
],
|
499 |
+
"text": "இந்த காட்சியை விவரிக்கவும், மேலும் இந்த படத்தின் அடிப்படையில் துருக்கியில் இந்த காட்சியுடன் தொடர்பான சில பிரபலமான நிகழ்வுகள் என்ன?",
|
500 |
+
},
|
501 |
+
],
|
502 |
+
[
|
503 |
+
{
|
504 |
+
"files": [
|
505 |
+
f"{cur_dir}/examples/pie.jpg",
|
506 |
+
],
|
507 |
+
"text": "Décrivez ce graphique. Quelles informations pouvons-nous en tirer?",
|
508 |
+
},
|
509 |
+
],
|
510 |
+
[
|
511 |
+
{
|
512 |
+
"files": [
|
513 |
+
f"{cur_dir}/examples/camera.jpg",
|
514 |
+
],
|
515 |
+
"text": "Apa arti dari dua angka di sebelah kiri yang ditampilkan di layar kamera?",
|
516 |
+
},
|
517 |
+
],
|
518 |
+
[
|
519 |
+
{
|
520 |
+
"files": [
|
521 |
+
f"{cur_dir}/examples/dog.jpg",
|
522 |
+
],
|
523 |
+
"text": "이 강아지의 표정을 보고 어떤 기분이나 감정을 느끼고 있는지 설명해 주시겠어요?",
|
524 |
+
},
|
525 |
+
],
|
526 |
+
[
|
527 |
+
{
|
528 |
+
"files": [
|
529 |
+
f"{cur_dir}/examples/book.jpg",
|
530 |
+
],
|
531 |
+
"text": "What language is the text in, and what does the title mean in English?",
|
532 |
+
},
|
533 |
+
],
|
534 |
+
[
|
535 |
+
{
|
536 |
+
"files": [
|
537 |
+
f"{cur_dir}/examples/food.jpg",
|
538 |
+
],
|
539 |
+
"text": "Unaweza kunipa kichocheo cha kutengeneza hii pancake?",
|
540 |
+
},
|
541 |
+
],
|
542 |
+
[
|
543 |
+
{
|
544 |
+
"files": [
|
545 |
+
f"{cur_dir}/examples/line chart.jpg",
|
546 |
+
],
|
547 |
+
"text": "Hãy trình bày những xu hướng mà bạn quan sát được từ biểu đồ và hiện tượng xã hội tiềm ẩn từ đó.",
|
548 |
+
},
|
549 |
+
],
|
550 |
+
[
|
551 |
+
{
|
552 |
+
"files": [
|
553 |
+
f"{cur_dir}/examples/south africa.jpg",
|
554 |
+
],
|
555 |
+
"text": "Waar is hierdie plek? Help my om ’n reisroete vir hierdie land te beplan.",
|
556 |
+
},
|
557 |
+
],
|
558 |
+
[
|
559 |
+
{
|
560 |
+
"files": [
|
561 |
+
f"{cur_dir}/examples/girl.jpg",
|
562 |
+
],
|
563 |
+
"text": "لماذا هذه الصورة مضحكة؟",
|
564 |
+
},
|
565 |
+
],
|
566 |
+
[
|
567 |
+
{
|
568 |
+
"files": [
|
569 |
+
f"{cur_dir}/examples/eagles.jpg",
|
570 |
+
],
|
571 |
+
"text": "Какой креатив должен быть в этом логотипе?",
|
572 |
+
},
|
573 |
+
],
|
574 |
+
],
|
575 |
+
inputs=[chat_input],
|
576 |
+
label="Image",
|
577 |
+
)
|
578 |
|
579 |
chat_msg = chat_input.submit(
|
580 |
+
add_message, [chatbot, chat_input], [chatbot, chat_input]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
581 |
)
|
582 |
+
bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response")
|
583 |
+
bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
|
584 |
|
585 |
+
# chatbot.like(print_like_dislike, None, None)
|
586 |
clear_btn.click(
|
587 |
+
fn=clear_history, inputs=[chatbot], outputs=[chatbot], api_name="clear_all"
|
|
|
|
|
|
|
|
|
588 |
)
|
589 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
|
591 |
demo.queue()
|
592 |
|